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Abstract
Generalizations of the polynomials of Bernoulli, Euler and Hermite are defined
here in terms of generalized integers called Fermatian integers. These are closely
related to the g-series extensively studied by Leonard Carlitz. These various
analogues of the classical special functions are inter-related with one another and
also to some of the problems posed by Morgan Ward. The works of Henry Gould
and Vern Hoggatt are also extensively cited.

1. Introduction
This paper is mainly concerned with generalizations of the Bernoulli, Euler and
Hermite polynomials which are based on the use of Fermatian numbers instead of the
ordinary integers [25]. Ordinary Bernoulli, Euler and Hermite polynomials can be

defined respectively as
te _ = £
/(et _1)—;13"()6) A,’ (1.1)

2 )= 2B (1.2)
e/(e): 2H, @ (1.3)

Carlitz [1-15] has studied numerous generalizations of these polynomials. In some of
them he has developed their g-series analogues [3,6]. Some of the g-Bernoulli numbers
and polynomials studied by Carlitz have been:

-n - n—r n r + 1 rx
B, q)=(g=D" (-1 (J—q : (1.4)
r=0 —r+l
-n - n—r n r + 1
B.(@)=B,0,9)=(g=D)" D (-1) (J— (1.5)
r=0 —r+l
in which q, 18 the n-th reduced Fermatian number of index b:
q, =l+qg+q* +..+q"", (n>0) (1.6)
with q,= 1, so that
lin} B.(q)=8B,, (1.7)
q—>

where B, is an ordinary Bernoulli number. Since [, (¢) is a rational function of g, we
may put
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so that

B@)=Y B, (g-1)"".

ﬁn,n = Bn‘

(1.8)

In his studies of various generalizations of Bernoulli numbers, Carlitz usually
looked at how they fit in with analogues of the Staudt-Clausen theorem. Horadam and
the present writer have also done this [21] and have also studied a relationship between
generalized Bernoulli numbers and reciprocals of generalized Fibonacci numbers [26].

It is the purpose of this paper to consider some generalized special functions
defined in terms of Fermatian numbers.

Define

where

2. Fermatian Bernoulli Polynomials

te, (xt) :iB 0 "
e, -1 1= " "z,

> n
e () = Z% .
n=0 / =n’

We shall call B, _(x) a Fermatian Bernoulli polynomial. Clearly

Bnl(x)=B (x).
e(t) 11t
oo tnl

_nl;n'
n0Zn+1

2.1)

This can be applied to the Fermatian Bernoulli polynomial defined above by adapting
Carlitz® approach to the ordinary Bernoulli polynomial Using the above we have that

That is,

in which

e, (t)—

n,
r=0 Zr+1 n=0

i xn tn — i N Bn—k,z (x)t”
= 2, 00 Zen Za 20!
oo tn n 1 n
= Z | |: j|Bnk (x)a
7m0 20 im0 Zea LK

ni_ oz,
k gk!gn—k!

is the g-series binomial coefficient. Whence we get
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n C 1 n
= MBM,Z (x) (2.2)

k=0 g1
which is a g-series analogue of the following result which was developed by Carlitz [16]:

o L[
* _Zk+1(kj3"‘k(x)'

k=0

3. Fermatian Hermite and Euler Polynomials
Carlitz, in his papers on Hermite polynomials, for example [16], suggested the
definition

e(t2)e(z) = ZOH (1) Z%x)n 3.1)
in which we have the g-series [6]
(@), =1-g)i-¢*).{1-¢")
It is appropriate at this stage to interrupt with some comments on notation. Since
the notation (g) is also used in combinatorics for the falling factorial coefficient

(@), =q(g=1).(g—n+1),
it is worth adopting Knuth’s suggestion at the 1967 Conference on Combinatorial
Mathematics and its Applications (see Riordan [24]), namely that we write ¢" for the

falling factorial coefficient and q; for the rising factorial coefficient

q" =q(g+1)..(g+n—-1).
The H, (t) of Equation (3.1) are thus in some ways analogous to the Hermite
polynomials defined by

2xz-z2 = n
P _an(x)Z4!'
n=0

We define instead

e (xt)e(t) = iOH e (X) % ) (3.2)

where the H, _(x) are Fermatian extensions of the Hermite polynomials. We then have

H,.(x)= me (3.3)

Proof:

z
and the result follows when the coefficients of ¢" are equated.
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Carlitz also suggested that we define an operator A by means of

Af@=f®-f).

If we re-define this for H, _(x) and use the relation

n _ n
k| |n-k|
AH, . ()=H, (x)-H,_(zx)

gl

we find that

k=0
=(1—2"hH, . (0.
This suggests a means of obtaining an analogue of
A B (x)=B,(x+1)—B,(x)
— nxn—l

where B, (x) is an ordinary Bernoulli polynomial. Unfortunately there is no simple
expression for e_(xt)—e_(zxt) which is necessary to obtain the analogue. The analogues
cannot be developed directly because

e, (x+1)z) = e, (xz)e, (2)
whereas

exp((x +1)z) = exp(xz)exp(2).

All that can be stated is it that follows from the above that

n-1

"
> {Z}AxBn_k,z(XFZ[ijk- (3.4)

k=0 Zx+1 k=0

Proof:

{Z}{Bn_m (x+D=B, (0= (x+D* —x*

3 n—1 n ‘ )
-5y \

Ward [28] bypassed this problem by writing (x+ y)" for the polynomial

k=0 L4l

n

n
[ }c”"y’. Later he examined

=0T

D:Dx" =z x"".
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Ward then defined
F""V(x)=DF" (x)
where

F(x)= icnx"
n=0

so that
F(x)=D"F(x).

F" ()7 N K
= c X .
Z}'! ;é; r !

F(x+y) =icn(x4ry)”

This means that

This led Ward to replace

n=0
formally by
}7(174—.y) = :E: }7(")(10 )1/{2/'
n=0 =nt

which is an analogue of Taylor’s formula. Thus, in Ward"s notation,

=3/

n=0
= e(x)e(y).
We do not need Ward’s approach to define suitable Bernoulli numbers to which a Staudt-
Clausen theorem can be applied, something which Ward was unable to do with his
method [21]. Carlitz [3] has another approach, which is mentioned later. Norlund [23]
defined general Bernoulli and Euler polynomials of higher order as follows:

ttext I . tk
=B
(e' =D k=0 k!
so that
B (x) =B, (x)
and

2e” —iE('”(x)i
e+ =" k!

Generalizations of these have been considered by Horadam and the present writer [26].

The work of Gould [17] should also be note here; he has studied these numbers at length
and has proved such elegant formulas as

n (k+1 .
B(z) — -1/ B(_'/Z).
‘ Z( )(J'H] ‘

Leopoldt [22] has defined another generalized Bernoulli number B; where & denotes a

primitive character (mod f):
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(r Ot [

tn
z (X)E

n=1

Zf( )

so that
n n—1 = r
B} = p"' Y &(r)B, >
r=1

= B: (0);

4

when p=1, we get the ordinary Bernoulli numbers. Carlitz [10] refined some of
Leopoldt’s results: let

t"e (xt) > t
T LB 35
oy & G-
Then
@ t" te (xt)
Y B (x)—=———
k=0 z,! e (-1
_te (xt)e (t)  tle (1)
(e.(®) —1)2 tle.(t) —1)2
I B(2)
e (z) 1y Z ! Z z
which relates the analogues of the Hermlte polynormals to the analogues of the Bernoulli
polynomials. This relationship can be made more specific:

e (-1 & " & "
(<O] S L5

Let us formally define B_,  (x)/z_,! to be zero. Then

(e 1) - 1} ZBM() +‘ (e (t)- 1} i B,

k=0

)3 } zBm
n=0 r=0 n+2 k 0
G| k+L | n+2 ;"
ZZ [n+2}{r+l} etz () 1

k=0 n=0 r=0 ey

=

Similarly,

e (1)—1 @) _°° k2 lk+2|n+2 B®
[ t sz () _kzz {n+2}[r+l Bicu..(x )gk+2!



We can then obtain for the Fermatian Hermite polynomials that
&)
k+1 l’l+2 Bk—n—l,z(‘x)+Bk n, (X)/Z o
n=0r=0 n+ 2 Z
—k+1

For the ordinary Bernoulli polynomials of orders 1 and 2, and for a Hermite polynomial
defined by

(3.6)
r+1

exp((1+x))=>"H, (x)t—‘,
n=0 n:
we have that
k+1\n+2\B,  (x)+B* (x)/(k—n)
H k—n—1 k—n .
)= ;;(n+2j(r+lj k+1 G3.7)

4. Ordinary Euler and Hermite Polynomials
This suggests that we try to discover a similar relationship among ordinary Euler
polynomials and Hermite polynomials defined by

exp 2x—t ZH (x)—

From the ordinary Euler polynomial defined in (1.2) we can obtain

(e +1)ZE (ZX)——Ze ( 2x— t)z)

n=0
=2¢" 3 H, i
n=0 n'
Now,
(" +1) ;En(x)%—(gt; JZE (2x)—
oo tm oo t oo tn
—;%;E 2X);+;En(2)€);
:i{ \ jE 2x)+E, (2x)} r
n=0 | r=0
and

2 m

2¢' ZH (x)——2z ZH (x)—

n=0 m=0 ' n=0
l_n
= 2 H r—n(x)
nz_(;r_g/:zj 2 (n=r)!'2r—n)!

N N n t"
_2; _Lzzj(zr n){rj 2rn (¥

On equating coefficients of ¢", we get
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n n n r! n
En (X) + ;(FJEV (ZX) - 2r:§2j (2}" . n)!(erZV—n (X), (41)

which is a relation between the Euler and Hermite polynomials.

5. Conclusion
It is of interest in closing to consider generalized Bernoulli and Euler polynomials
analogous to those of Gould [18]. Let

ICtx) L& t*
= B _—
C(t)_l ; k,z(x’c)gk! (51)
and
20(tx) & i
sl ;Ek,z(x’c)gk! (5.2)

define B, .(x,c) and E, _(x,c), in which
C(t)=e,(ct)
where e (f) is the Fermatian exponential. This is analogous to the ordinary situation
where
C'=e", if C=e".
In Gould’s work, C = B/a, where a:%(1+\/§) and B :%(1—\/5) are the roots of the

Fibonacci characteristic polynomial x> —x—1=0. Incidentally, Gould’s C and
Hoggatt’s C,, [19] can be related when p = -g = 1 in the characteristic polynomial of

Horadam’s generalized Fibonacci numbers [20] x* — px+¢ =0:

1 C +1,k+
c=5 EL‘E( o %k k j (5.3)

— Fk—le—2"'F1
FF,..F_F,

-1
Vi,

where F, is the kth Fibonacci number..

Proof:

k.k

whenp =-g =1

C+ + . F
Blim — = Blim —*

koo Gy k= Bl

_B

a
from Vorob'ev [27]. From (5.1) we get
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k

. o
S B, (re) = 1)
= G

_ l cte, (ctx)
e e (ct)—1

1 oo k
-3 B0

c Z;!

which gives

B, . (x,c)=B,, (x)c*! (5.4)

as a relation between the analogues of the ordinary and Fermatian Bernoulli polynomials.
A similar relation can be found for Euler polynomials. When z=1 we get the
corresponding relation for ordinary Bernoulli polynomials

B,(x,c) = B, (x)(logC)"",

which agrees with Gould.
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