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Abstract 
Generalizations of the polynomials of Bernoulli, Euler and Hermite are defined 

here in terms of generalized integers called Fermatian integers.  These are closely 

related to the q-series extensively studied by Leonard Carlitz.  These various 

analogues of the classical special functions are inter-related with one another and 

also to some of the problems posed by Morgan Ward.  The works of Henry Gould 

and Vern Hoggatt are also extensively cited. 

 

1. Introduction 
This paper is mainly concerned with generalizations of the Bernoulli, Euler and 

Hermite polynomials which are based on the use of Fermatian numbers instead of the 

ordinary integers [25].  Ordinary Bernoulli, Euler and Hermite polynomials can be 

defined respectively as 
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Carlitz [1-15] has studied numerous generalizations of these polynomials.  In some of 

them he has developed their q-series analogues [3,6]. Some of the q-Bernoulli numbers 

and polynomials studied by Carlitz have been: 
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in which 
n

q  is the n-th reduced Fermatian number of index b: 
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with 1
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=q , so that 
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where 
nB  is an ordinary Bernoulli number. Since )(qnβ  is a rational function of q, we 

may put 
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 In his studies of various generalizations of Bernoulli numbers, Carlitz usually 

looked at how they fit in with analogues of the Staudt-Clausen theorem.  Horadam and 

the present writer have also done this [21] and have also studied a relationship between 

generalized Bernoulli numbers and reciprocals of generalized Fibonacci numbers [26]. 

 It is the purpose of this paper to consider some generalized special functions 

defined in terms of Fermatian numbers. 

 

2. Fermatian Bernoulli Polynomials 
 Define 
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where  
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We shall call )(, xB zn  a Fermatian Bernoulli polynomial. Clearly 
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This can be applied to the Fermatian Bernoulli polynomial defined above by adapting 

Carlitz` approach to the ordinary Bernoulli polynomial.  Using the above we have that 
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is the q-series binomial coefficient. Whence we get 
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which is a q-series analogue of the following result which was developed by Carlitz [16]: 
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3. Fermatian Hermite and Euler Polynomials 

 Carlitz, in his papers on Hermite polynomials, for example [16], suggested the 

definition  
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in which we have the q-series [6] 
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It is appropriate at this stage to interrupt with some comments on notation. Since 

the notation ( )
n

q  is also used in combinatorics for the falling factorial coefficient 

),1)..(1()( +−−= nqqqq n   

it is worth adopting Knuth’s suggestion at the 1967 Conference on Combinatorial 

Mathematics and its Applications (see Riordan [24]), namely that we write n
q  for the 

falling factorial coefficient and n
q  for the rising factorial coefficient 
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 The )(tH n  of Equation (3.1) are thus in some ways analogous to the Hermite 

polynomials defined by 
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where the )(, xH zn  are Fermatian extensions of the Hermite polynomials.  We then have  
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and the result follows when the coefficients of n
t  are equated. 
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 Carlitz also suggested that we define an operator 
x
∆  by means of  
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This suggests a means of obtaining an analogue of 
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where )(xBn  is an ordinary Bernoulli polynomial. Unfortunately there is no simple 

expression for )()( zxtexte zz −  which is necessary to obtain the analogue. The analogues 

cannot be developed directly because 
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All that can be stated is it that follows from the above that 
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Proof: 
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 Ward [28] bypassed this problem by writing nyx )( +  for the polynomial 
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Ward then defined  
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which is an analogue of Taylor’s formula.  Thus, in Ward`s notation, 
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We do not need Ward’s approach to define suitable Bernoulli numbers to which a Staudt-

Clausen theorem can be applied, something which Ward was unable to do with his 

method [21].  Carlitz [3] has another approach, which is mentioned later.  Nörlund [23] 

defined general Bernoulli and Euler polynomials of higher order as follows: 
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Generalizations of these have been considered by Horadam and the present writer [26].  

The work of Gould [17] should also be note here; he has studied these numbers at length 

and has proved such elegant formulas as 
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Leopoldt [22] has defined another generalized Bernoulli number n
Bξ  where ξ  denotes a 

primitive character (mod f): 
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when p=1, we get the ordinary Bernoulli numbers.  Carlitz [10] refined some of 

Leopoldt’s results: let 
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which relates the analogues of the Hermite polynomials to the analogues of the Bernoulli 

polynomials.  This relationship can be made more specific: 
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Let us formally define !/)( 1,1 −− zxB z
 to be zero.  Then 
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We can then obtain for the Fermatian Hermite polynomials that 
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For the ordinary Bernoulli polynomials of orders 1 and 2, and for a Hermite polynomial 

defined by 
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4. Ordinary Euler and Hermite Polynomials 

This suggests that we try to discover a similar relationship among ordinary Euler 

polynomials and Hermite polynomials defined by 
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From the ordinary Euler polynomial defined in (1.2) we can obtain 
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On equating coefficients of n
t , we get 
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which is a relation between the Euler and Hermite polynomials. 

 

5. Conclusion 

 It is of interest in closing to consider generalized Bernoulli and Euler polynomials 

analogous to those of Gould [18].  Let 
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define ),(, cxB zk  and ),(, cxE zk , in which 
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from Vorob`ev [27].  From (5.1) we get 
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as a relation between the analogues of the ordinary and Fermatian Bernoulli polynomials.  

A similar relation can be found for Euler polynomials.  When z=1 we get the 

corresponding relation for ordinary Bernoulli polynomials 
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