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Abstract: Two modifications of Klamkin’s inequality are formulated and proved.
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In [1] Klamkin introduced the inequality
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(m+n)(1+2z2™)>2n (1)
where m > n > 1 and x > 0,# 1 are real numbers. This inequality is an object of research
and application by J. Sandor in [2].

We will modify (1) to two different forms.

Theorem 1. Let x > 0,m >k >n > 1 and 2k > m +n. Then
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Proof. Let x > 1. Then, (2) has the equivalent forms
. xm—i—k—&-n -1
(m+k+n)(1+2™)(1+2"%) >3n ] (3)
and
(m+k+n)(z™+ 1)(z" 4+ 1)(2™ — 1) > 3n(z™F" - 1). (4)
Now, having in mind (1), in its form
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for (4) we obtain sequentially
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(from 2k > m+mn and z > 1)
> 0.

If x = 1, then both sides of (4) are equal to 0. If 2 = 0, then (3) is transformed to the
inequality
m+k+n > 3n,

that is true.
Let below 0 < x < 1. Then, (2) has the form

(m+k+n)(1+z2™)(1+2")(1—2") > 3n(l — ™) (6)
Having in mind (1), for (6) we obtain sequentially
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(from 2k > m+n and x < 1)
> 0.

Therefore, in both cases (2) is valid.
Theorem 2. Let x > 0,k >m >n >1and m +n > k. Then (2) is valid.
Proof. Let z > 1. We will use again (4) (as an equivalent form of (2)) and (5):
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The rest of the cases are checked by analogy.
In a next author’s research an extension of Klamkin’s inequality will be discussed. In it,
numbers k£, m,n will be changed with s real numbers my, mo, ..., ms.
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