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Abstract: Using clear and straightforward approaches, we prove new ternary (base 3) digit
extraction BBP-type formulas for polylogarithm constants. Some known results are also
rediscovered in a more direct and elegant manner. An hitherto unproved degree 4 ternary
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prove two known but hitherto unproved formulas.
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1 Introduction

BBP-type formulas are formulas of the form

α =
∞∑
k=0

1/bk
n∑
j=1

aj/(kn+ j)s

where s, b, n and aj are integers, and α is some constant. Formulas of this type were
first introduced in a 1996 paper [1], where a formula of this type for π was given. Such
formulas have the remarkable property that they permit one to calculate base-b digits of
the constant α beginning at an arbitrary starting position, by means of a simple algorithm
that requires almost no memory and (depending on how many digits are required) without
the need for multiple-precision arithmetic software [2]. Such formulas also have intriguing
connections to the age-old problem of understanding why the digits of various transcendental
constants appear “normal” – each string of m-long digits appears, in the limit, with frequency
1/bm [3, 4, 5, 2].

While many binary BBP-type formulas are now known, only relatively few ternary (base-
3) BBP-type formulas have been discovered. This present paper is concerned with the sym-
bolic (that is, non-computer-search-based) discovery of ternary (base-3) BBP-type formulas
for polylogarithm constants. The methods used here aim to complement the experimental
approaches that have dominated the area. Through fundamental methods, a wide range
of interesting formulas will be obtained. In most cases, the procedure for obtaining the
ternary formulas shall consist mainly of evaluating a polylogarithm functional equation at
indicated coordinates and noting the following identities for the real and imaginary parts of
the polylogarithm function:
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Re Lis
[
peix

]
=
∞∑
k=1

pk cos kx

ks

Im Lis
[
peix

]
=
∞∑
k=1

pk sin kx

ks
,

(1)

for p ∈ [0, 1], x ∈ R and s ∈ Z+. In the above equations, Li is the notation for the
polylogarithm function defined by

Lis[z] =
∞∑
k=1

zk

ks
, |z| ≤ 1 .

When p = 1 we have

Li2n[eix] = Gl2n(x) + iCl2n(x)

Li2n+1[e
ix] = Cl2n+1(x) + iGl2n+1(x) ,

(2)

where Gl and Cl are Clausen sums [6] defined, for n ∈ Z+ by

Cl2n(x) =
∞∑
k=1

sin kx

k2n
, Cl2n+1(x) =

∞∑
k=1

cos kx

k2n+1

Gl2n(x) =
∞∑
k=1

cos kx

k2n
, Gl2n+1(x) =

∞∑
k=1

sin kx

k2n+1
.

(3)

We shall find the following formulas useful:

Gl2n(x) = (−1)1+[n/2]2n−1πnBn(x/2π)/n!

1

mn−1Cln(mx) =
m−1∑
r=0

Cln(x+ 2πr/m) .
(4)

Here [n/2] denotes the integer part of n/2 and Bn are the Bernoulli polynomials defined by

text

et − 1
=
∞∑
n=0

Bn(x)tn

n!
.

2 Degree 1 Ternary BBP-type Formulas

In reference [7], several degree 1 BBP-type formulas in general bases are proven. In many of
the formulas, ternary formulas may be readily obtained by writing the base in each case as
a power of 3.

Here we now present a couple of interesting degree 1 ternary formulas.
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The following identities are easily verified:

Li1

[
1√
3

exp

(
iπ

6

)]
=

1

2
ln 3 +

iπ

6

and

Li1

[
1√
3

exp

(
iπ

2

)]
=

1

2
ln 3− ln 2 +

iπ

6
.

(5)

We therefore have the formulas:

ln 2 = Re Li1

[
1√
3

exp

(
iπ

6

)]
− Re Li1

[
1√
3

exp

(
iπ

2

)]
, (6)

ln 3 = 2Re Li1

[
1√
3

exp

(
iπ

6

)]
(7)

and

π = 6 Im Li1

[
1√
3

exp

(
iπ

6

)]
= 6 Im Li1

[
1√
3

exp

(
iπ

2

)]
. (8)

It is also straightforward to verify that:

ln 2 = Li1

[
1

3

]
− Li1

[
−1

3

]
and

ln 3 = 2Li1

[
1

3

]
− Li1

[
−1

3

]
.

(9)

Based on the above formulas, we are now ready to derive explicit BBP-type formulas for
ln 2, ln 3 and π.

2.1 Ternary formulas for ln 2

Using the first of Eq. (1), we note that

Re Li1

[
1√
3

exp

(
iπ

6

)]
=
∞∑
k=1

(
1√
3

)k
cos(kπ/6)

k

=
1

2 · 36

∞∑
k=0

1

36k

[
36

12k + 1
+

35

12k + 2

− 34

12k + 4
− 34

12k + 5
− 2 · 33

12k + 6
− 33

12k + 7

− 32

12k + 8
+

3

12k + 10
+

3

12k + 11
+

2

12k + 12

]
(10)

and
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Re Li1

[
1√
3

exp

(
iπ

2

)]
=

1

36

∞∑
k=0

1

36k

[
− 35

12k + 2
+

34

12k + 4

− 33

12k + 6
+

32

12k + 8
− 3

12k + 10
+

2

12k + 12

]
.

(11)

Subtracting Eq. (11) from Eq. (10) in accordance with Eq. (6), we obtain the following
ternary BBP-type formula for ln 2:

ln 2 =
1

2 · 35

∞∑
k=0

1

36k

[
35

12k + 1
+

35

12k + 2

− 34

12k + 4
− 33

12k + 5
− 32

12k + 7
− 32

12k + 8

+
3

12k + 10
+

1

12k + 11

]
.

(12)

Note that an alternating version of Eq. (12), using the same scheme, is

ln 2 =
1

18

∞∑
k=0

(
− 1

27

)k [
9

6k + 1
+

9

6k + 2
− 3

6k + 4
− 1

6k + 5

]
.

From the first of Eq. (9), we can obtain yet another ternary formula for ln 2, as follows:

Li1

[
1

3

]
=

1

9

∞∑
k=0

1

9k

[
3

2k + 1
+

1

2k + 2

]
(13)

and

Li1

[
−1

3

]
=

1

9

∞∑
k=0

1

9k

[
− 3

2k + 1
+

1

2k + 2

]
(14)

Subtracting Eq. (14) from Eq. (13) in accordance with the first of Eq. (9), we obtain

ln 2 =
3

2

∞∑
k=0

1

9k

[
1

2k + 1

]
, (15)

which is listed in the BBP Compendium as formula (48).

2.2 Ternary formulas for ln 3

Using Eq. (10) and Eq. (7), we obtain the following ternary BBP-type formula for ln 3:

ln 3 =
1

36

∞∑
k=0

1

36k

[
36

12k + 1
+

35

12k + 2

− 34

12k + 4
− 34

12k + 5
− 2 · 33

12k + 6
− 33

12k + 7

− 32

12k + 8
+

3

12k + 10
+

3

12k + 11
+

2

12k + 12

]
.

(16)
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An alternating version of the above formula is

ln 3 =
1

27

∞∑
k=0

(
− 1

27

)k [
27

6k + 1
+

9

6k + 2
− 3

6k + 4
− 3

6k + 5
− 2

6k + 6

]
.

Combining Eq. (13) and Eq. (14) according to the second equality of Eq. (9) we obtain
another ternary BBP-type formula for ln 3 as :

ln 3 =
1

9

∞∑
k=0

1

9k

[
9

2k + 1
+

1

2k + 2

]
, (17)

which is Formula (51) of the Compendium.

2.3 Ternary formulas for π

From Eq. (8), we immediately obtain the ternary BBP-type formulas

π =

√
3

35

∞∑
k=0

1

36k

[
35

12k + 1
+

35

12k + 2
+

2 · 34

12k + 3

+
34

12k + 4
+

33

12k + 5
− 32

12k + 7
− 32

12k + 8

− 2 · 3
12k + 9

− 3

12k + 10
− 1

12k + 11

] (18)

and

π =
2
√

3

35

∞∑
k=0

1

36k

[
35

12k + 1
− 34

12k + 3
+

33

12k + 5

− 32

12k + 7
+

3

12k + 9
− 1

12k + 11

]
.

(19)

An alternating version of Eq. (19) is

π = 2
√

3
∞∑
k=0

(
−1

3

)k [
1

2k + 1

]
. (20)

2.4 Ternary Zero Relations

Eq. (15) may be rewritten in base 36, length 12 as

ln 2 =
4

35

∞∑
k=0

1

36k

[
34

12k + 2
+

32

12k + 6
+

1

12k + 10

]
(21)

Subtracting Eq. (21) from Eq. (12), we obtain the following ternary zero relation:
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0 =
∞∑
k=0

1

36k

[
35

12k + 1
− 5 · 34

12k + 2
− 34

12k + 4

− 33

12k + 5
− 23 · 32

12k + 6
− 32

12k + 7
− 32

12k + 8

− 5

12k + 10
+

1

12k + 11

]
.

(22)

Note that

Eq. (22) = Compendium formula (104)− Compendium formula (103) = 0 . (23)

Subtracting Eq. (18) from Eq. (19), we obtain the zero relation:

0 =
∞∑
k=0

1

36k

[
243

12k + 1
− 243

12k + 2
− 324

12k + 3

− 81

12k + 4
+

27

12k + 5
− 9

12k + 7
+

9

12k + 8

+
12

12k + 9
+

3

12k + 10
− 1

12k + 11

]
.

(24)

Note also that

Eq. (24) = Compendium formula (104) + Compendium formula (103) = 0 (25)

Eqs. (23) and (25) therefore establish that

Compendium formula(103) = 0

and

Compendium formula(104) = 0 .

(26)

Thus the hitherto unproved formulas (103) and (104) in the BBP Compendium are now
proved.

3 Degree 2 Ternary BBP-type Formulas

The dilogarithm reflection formula (Eq. A.2.1.7 of [6]) is

π2

6
− lnx ln(1− x) = Li2[x] + Li2[1− x] .

Putting x = − exp(iπ/3) in the above equation and taking real and imaginary parts gives

5π2

72
− 1

8
ln2 3 = Re Li2

[
1√
3

exp

(
iπ

6

)]
(27)
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and

2

3
Cl2

(π
3

)
− π ln 3

12
= Im Li2

[
1√
3

exp

(
iπ

6

)]
. (28)

A two-variable functional equation for dilogarithms, due to Kummer (Eq. A.2.1.19 of [6])
is

Li2

[
x(1− y)2

y(1− x)2

]
= Li2

[
−x(1− y)

(1− x)

]
+ Li2

[
− (1− y)

y(1− x)

]
+ Li2

[
x

y

(1− y)

(1− x)

]
+ Li2

[
1− y
1− x

]
+

1

2
ln2 y .

(29)

Choosing x = − exp(iπ/3) and y = exp(iπ/3) in Eq. (29) gives

π2

12
− ln2 3

4
= Li2

[
1

3

]
− 1

2
Li2

[
−1

3

]
. (30)

Note that the choice of x = −1 and y = 1/3 gives the same result.

Another two-variable functional equation for dilogarithms, due to Abel (Eq. A.2.1.16
of [6]) is

Li2

[
x

1− x
· y

1− y

]
= Li2

[
x

(1− y)

]
+ Li2

[
y

(1− x)

]
− Li2 [x]− Li2 [y]− ln(1− x) ln(1− y) .

(31)

Choosing x = − exp(iπ/3) and y = exp(−iπ/3) in Eq. (31) and taking imaginary parts
gives

5

2
Cl2

(π
3

)
− π ln 3

4
= 3Im Li2

[
1√
3

exp

(
iπ

2

)]
. (32)

3.1 Ternary Formula for π2

Solving Eq. (27) and Eq. (30) for π2, we obtain

π2 = 36Re Li2

[
1√
3

exp

(
iπ

6

)]
− 18Li2

[
1

3

]
+ 9Li2

[
−1

3

]
. (33)

Writing
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Re Li2

[
1√
3

exp

(
iπ

6

)]
=

1

2 · 36

∞∑
k=0

1

36k

[
36

(12k + 1)2
+

35

(12k + 2)2

− 34

(12k + 4)2
− 34

(12k + 5)2
− 33

(12k + 6)2

− 33

(12k + 7)2
− 32

(12k + 8)2

+
3

(12k + 10)2
+

2

(12k + 12)2

]
(34)

and

Li2

[
±1

3

]
=

22

36

∞∑
k=0

1

36k

[
± 35

(12k + 2)2
+

34

(12k + 4)2

± 33

(12k + 6)2
+

32

(12k + 8)2

± 3

(12k + 10)2
+

1

(12k + 12)2

]
,

(35)

and combining them according to Eq. (33) gives the ternary BBP-type formula for π2 as

π2 =
2

27

∞∑
k=0

1

36k

[
35

(12k + 1)2
− 5 · 34

(12k + 2)2

− 34

(12k + 4)2
− 33

(12k + 5)2
− 23 · 32

(12k + 6)2

− 32

(12k + 7)2
− 32

(12k + 8)2

− 5

(12k + 10)2
+

1

(12k + 11)2

]
.

(36)

Incidentally, Eq. (36) is Formula (57) of the Compendium.

3.2 Ternary Formula for ln2 3

Solving Eq. (27) and Eq. (30) for ln2 3, we obtain

ln2 3 = 12 Re Li2

[
1√
3

exp

(
iπ

6

)]
− 10 Li2

[
1

3

]
+ 5 Li2

[
−1

3

]
. (37)

Using Eqs. (34) and (35) above in Eq. (37), we obtain the ternary BBP-type formula for
ln2 3 as
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ln2 3 =
1

36

∞∑
k=0

1

36k

[
2 · 37

(12k + 1)2
− 2 · 38

(12k + 2)2

− 2 · 13 · 34

(12k + 4)2
− 2 · 35

(12k + 5)2
− 23 · 35

(12k + 6)2

− 2 · 34

(12k + 7)2
− 2 · 13 · 32

(12k + 8)2

− 2 · 34

(12k + 10)2
+

2 · 32

(12k + 11)2
− 8

(12k + 12)2

]
,

(38)

which is Formula (58) of the Compendium.

3.3 Ternary Formula for π ln 3

Solving Eqs. (28) and (32) for π ln 3 gives

π ln 3 = 48 Im Li2

[
1√
3

exp

(
iπ

2

)]
− 60 Im Li2

[
1√
3

exp

(
iπ

6

)]
. (39)

Now

Im Li2

[
1√
3

exp

(
iπ

6

)]
=

√
3

54

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)2
+

9

(6k + 2)2

+
6

(12k + 3)2
+

3

(12k + 4)2
+

1

(6k + 5)2

] (40)

and

Im Li2

[
1√
3

exp

(
iπ

2

)]
=

√
3

27

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)2
− 3

(6k + 3)2
+

1

(6k + 5)2

]
(41)

Using Eqs. (40) and (41) in Eq. (39) leads to the ternary BBP-type formula

π ln 3 =
2
√

3

3

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)2
− 15

(6k + 2)2
− 18

(6k + 3)2

− 5

(6k + 4)2
+

1

(6k + 5)2

]
.

(42)

3.4 Ternary Formula for Cl2(π/3)

Solving Eqs. (28) and (32) for Cl2(π/3) gives

Cl2

(π
3

)
= 6 Im Li2

[
1√
3

exp

(
iπ

2

)]
− 6 Im Li2

[
1√
3

exp

(
iπ

6

)]
. (43)
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Using Eqs. (40) and (41) in Eq. (43) leads to the ternary BBP-type formula

Cl2

(π
3

)
=

√
3

9

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)2
− 9

(6k + 2)2
− 12

(6k + 3)2

− 3

(6k + 4)2
+

1

(6k + 5)2

]
.

(44)

4 Degree 3 Ternary BBP-type Formulas

A functional identity for trilogarithms (Eq. A.2.6.10 of [6]) is

Li3

[
1− x
1 + x

]
− Li3

[
x− 1

x+ 1

]
= 2 Li3 [1− x] + 2 Li3

[
1

1 + x

]
− 1

2
Li3
[
1− x2

]
− 7

4
ζ(3)

+
π2

6
ln(1 + x)− 1

3
ln3(1 + x) .

(45)

The use of x = 2 in the above equation gives

13

6
ζ(3)− 1

6
π2 ln 3 +

1

6
ln3 3 = 2 Li3

[
1

3

]
− Li3

[
−1

3

]
. (46)

Putting x = exp iπ/3 in the functional equation and taking real and imaginary parts
gives

13

18
ζ(3)− 5

144
π2 ln 3 +

1

48
ln3 3 = Re Li3

[
1√
3

exp

(
iπ

6

)]
(47)

and

29

1296
π3 − 1

48
π ln2 3

= 4 Im Li3

[
1√
3

exp

(
iπ

2

)]
− 5 Im Li3

[
1√
3

exp

(
iπ

6

)]
.

(48)

Using

Li3

[
±1

3

]
=

1

36

∞∑
k=0

1

36k

[
± 35

(6k + 1)3
+

34

(6k + 2)3
± 33

(6k + 3)3

+
32

(6k + 4)3
± 3

(6k + 5)3
+

1

(6k + 6)3

] (49)

leads to the ternary BBP-type formula
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13ζ(3)− π2 ln 3 + ln3 3

=
2

35

∞∑
k=0

1

36k

[
36

(6k + 1)3
+

34

(6k + 2)3
+

34

(6k + 3)3

+
32

(6k + 4)3
+

32

(6k + 5)3
+

1

(6k + 6)3

]
.

(50)

A shorter version (length 2) of the above formula is

13ζ(3)− π2 ln 3 + ln3 3 =
2

3

∞∑
k=0

1

9k

[
9

(2k + 1)3
+

1

(2k + 2)3

]
. (51)

The ternary BBP-type formula that results from Eq. (47) is discussed elsewhere [8].

Next we obtain the ternary BBP-type formula that results from Eq. (48).

Im Li3

[
1√
3

exp

(
iπ

2

)]
=

√
3

36

∞∑
k=0

1

36k

[
35

(12k + 1)3
− 34

(12k + 3)3

+
33

(12k + 5)3
− 32

(12k + 7)3
+

3

(12k + 9)3
− 1

(12k + 11)3

] (52)

and

Im Li3

[
1√
3

exp

(
iπ

6

)]
=

√
3

2 · 36

∞∑
k=0

1

36k

[
35

(12k + 1)3
+

35

(12k + 2)3
+

2 · 34

(12k + 3)3

+
34

(12k + 4)3
+

33

(12k + 5)3
− 32

(12k + 7)3

− 32

(12k + 8)3
− 2 · 3

(12k + 9)3
− 3

(12k + 10)3
− 1

(12k + 11)3

] (53)

Combining Eqs. (52) and (53) according to the prescription of Eq. (48), we arrive at

29

1296
π3 − 1

48
π ln2 3 =

√
3

2 · 36

∞∑
k=0

1

36k

[
36

(12k + 1)3
− 5 · 35

(12k + 2)3

− 2 · 36

(12k + 3)3
− 5 · 34

(12k + 4)3
+

34

(12k + 5)3
− 33

(12k + 7)3

+
5 · 32

(12k + 8)3
+

2 · 33

(12k + 9)3
+

5 · 3
(12k + 10)3

− 3

(12k + 11)3

]
.

(54)
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5 Degree 4 Ternary BBP-type Formulas

A two-variable functional equation for degree 4 polylogarithms (Eq. A.2.7.40 of [6]) reads

Li4

[
−x

2yη

ξ

]
+ Li4

[
−y

2xξ

η

]
+ Li4

[
x2y

η2ξ

]
+ Li4

[
y2x

ξ2η

]
= 6 Li4 [xy] + 6 Li4

[
xy

η ξ

]
+ 6 Li4

[
−xy
η

]
+ 6 Li4

[
−xy
ξ

]
+ 3 Li4 [xη] + 3 Li4 [yξ] + 3 Li4

[
x

η

]
+ 3 Li4

[
y

ξ

]
+ 3 Li4

[
−xη
ξ

]
+ 3 Li4

[
−yξ
η

]
+ 3 Li4

[
− x

η ξ

]
+ 3 Li4

[
− y

η ξ

]
− 6 Li4 [x]

− 6 Li4 [y]− 6 Li4

[
−x
ξ

]
− 6 Li4

[
−y
η

]
+ 3/2 ln2 ξ ln2 η ,

(55)

where ξ = 1− x, η = 1− y.

Putting x = − exp (iπ/3) and y = exp (iπ/3) in Eq. (55), simplifying and taking real and
imaginary parts, we obtain

− 12 Re Li4

[
1√
3
eiπ/2

]
− 3 Re Li4

[
1√
3
eiπ/6

]
+ Li4

[
1

3

]
+

1

4
Li4

[
−1

3

]
= −127π4

10368
+

1

64
π2 ln2 3− 5

384
ln4 3

(56)

and

− 12 Im Li4

[
1√
3
eiπ/2

]
+ 15 Im Li4

[
1√
3
eiπ/6

]
=

29

864
π3 ln 3− 1

96
π ln3 3− 11

3
Cl4

(π
3

)
.

(57)

First we proceed to obtain the BBP-type formula invoked by Eq. (56).

Now,

Re Li4

[
1√
3

exp

(
iπ

2

)]
=

1

36

∞∑
k=0

1

36k

[
− 35

(12k + 2)4
+

34

(12k + 4)4

− 33

(12k + 6)4
+

32

(12k + 8)4
− 3

(12k + 10)4
+

1

(12k + 12)4

] (58)

and
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Re Li4

[
1√
3

exp

(
iπ

6

)]
=

1

2 · 36

∞∑
k=0

1

36k

[
36

(12k + 1)4
+

35

(12k + 2)4

− 34

(12k + 4)4
− 34

(12k + 5)4
− 2 · 33

(12k + 6)4

− 33

(12k + 7)4
− 32

(12k + 8)4
+

3

(12k + 10)4

+
2

(12k + 12)4

]
.

(59)

Also

Li4

[
±1

3

]
=

24

36

∞∑
k=0

1

36k

[
± 35

(12k + 2)4
+

34

(12k + 4)4

± 33

(12k + 6)4
+

32

(12k + 8)4
± 3

(12k + 10)4

+
1

(12k + 12)4

]
.

(60)

Combining Eqs. (58), (59) and (60) according to Eq. (56), we obtain the following degree 4
ternary BBP-type formula:

127π4

5184
− π2 ln2 3

32
+

5 ln4 3

192
=

1

36

∞∑
k=0

1

36k

[
37

(12k + 1)4
− 5 · 37

(12k + 2)4

− 19 · 34

(12k + 4)4
− 35

(12k + 5)4
− 2 · 36

(12k + 6)4

− 34

(12k + 7)4
− 19 · 32

(12k + 8)4
− 5 · 33

(12k + 10)4

+
32

(12k + 11)4
− 10

(12k + 12)4

]
.

(61)

Next we obtain the BBP-type formula invoked by Eq. (57).

Writing

Im Li4

[
1√
3

exp

(
iπ

2

)]
=

√
3

27

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)4
− 3

(6k + 3)4
+

1

(6k + 5)4

] (62)

and
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Im Li4

[
1√
3

exp

(
iπ

6

)]
=

√
3

54

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)4
+

9

(6k + 2)4

+
6

(6k + 3)4
+

3

(6k + 4)4
+

1

(6k + 5)4

]
,

(63)

and combining these according to Eq. (57), we obtain the following degree 4 BBP-type
formula:

11Cl4

(π
3

)
− 29

288
π3 ln 3 +

π ln3 3

32

=

√
3

2

∞∑
k=0

(
− 1

27

)k [
9

(6k + 1)4
− 15

(6k + 2)4

− 18

(6k + 3)4
− 5

(6k + 4)4
+

1

(6k + 5)4

]
.

(64)

It is interesting to remark that Eq. (64) was also obtained by Broadhurst [9], using the
PSLQ Algorithm. We have thus found its formal proof for the first time, through Eq. (57)!

6 Degree 5 Ternary BBP-type Formulas

The following degree 5 polylogarithm identity is derived in [10]

Li5

[
xα

yβ

]
+ Li5 [xα yη] + Li5

[
xα β

η

]
+ Li5 [xξ yβ] + Li5

[
xξ

yη

]
+ Li5

[
xξ η

β

]
+ Li5

[
α yβ

ξ

]
+ Li5

[
α

ξ yη

]
+ Li5

[
α η

ξ β

]
− 9 Li5 [xy]− 9 Li5 [xβ]− 9 Li5 [xη]− 9 Li5

[
x

y

]
− 9 Li5

[
x

β

]
− 9 Li5

[
x

η

]
− 9 Li5 [α y]− 9 Li5 [αβ]− 9 Li5 [α η]

− 9 Li5

[
α

y

]
− 9 Li5

[
α

β

]
− 9 Li5

[
α

η

]
− 9 Li5 [ξ y]− 9 Li5 [ξ β]

− 9 Li5 [ξ η]− 9 Li5

[
y

ξ

]
− 9 Li5

[
β

ξ

]
− 9 Li5

[
η

ξ

]
+ 18 Li5 [x] + 18 Li5 [α] + 18 Li5 [ξ] + 18 Li5 [y] + 18 Li5 [β]

+ 18 Li5 [η]− 18 ζ(5) = 3/10 (ln ξ)5 + 3/4 (ln y − lnx) (ln ξ)4

+ 3/2 (3 ln y − ln η) (ln η)2 (ln ξ)2 + 1/2 π2 (ln ξ − 3 ln η) (ln ξ)2 + 1/5 π4 ln ξ .

(65)

Here ξ = 1− x, η = 1− y, α = −x/ξ and β = −y/η.

Putting x = − exp (iπ/3) and y = exp (iπ/3) in Eq. (65) and simplifying, gives
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1

64
π2 ln3 3− 127

3456
π4 ln 3− 1

128
ln5 3 +

1573

144
ζ(5)

=
3

2
Li5

[
−1

3

]
− 3 Li5

[
1

3

]
+ 9 Li5

[
1√
3
eiπ/6

]
+ 9 Li5

[
1√
3
e−iπ/6

]
.

(66)

On taking real parts

1

64
π2 ln3 3− 127

3456
π4 ln 3− 1

128
ln5 3 +

1573

144
ζ(5)

= 18 Re Li5

[
1√
3
eiπ/6

]
+

3

2
Li5

[
−1

3

]
− 3 Li5

[
1

3

]
.

(67)

Now

18 Re Li5

[
1√
3
eiπ/6

]
= 18

∞∑
k=0

(
1√
3

)k
1

k5
cos

(
kπ

6

)
=

1

36

∞∑
k=0

1

36k

[
38

(12k + 1)5
+

37

(12k + 2)5
− 36

(12k + 4)5

− 36

(12k + 5)5
− 2 · 35

(12k + 6)5
− 35

(12k + 7)5
− 34

(12k + 8)5

+
33

(12k + 10)5
+

33

(12k + 11)5
+

2 · 32

(12k + 12)5

]
,

(68)

3

2
Li5

[
−1

3

]
=

3

2

∞∑
k=1

(
−1

3

)k
1

k5

=
1

36

∞∑
k=0

1

36k

[
−36 · 24

(12k + 2)5
+

35 · 24

(12k + 4)5
− 34 · 24

(12k + 6)5

+
33 · 24

(12k + 8)5
− 32 · 24

(12k + 10)5
+

3 · 24

(12k + 12)5

] (69)

and

3 Li5

[
1

3

]
= 3

∞∑
k=1

(
1

3

)k
1

k5

=
1

36

∞∑
k=0

1

36k

[
36 · 25

(12k + 2)5
+

35 · 25

(12k + 4)5
+

34 · 25

(12k + 6)5

+
33 · 25

(12k + 8)5
+

32 · 25

(12k + 10)5
+

3 · 25

(12k + 12)5

]
.

(70)
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Using Eq. (68), (69) and (70) in Eq. (67), we obtain the ternary BBP-type formula

1

64
π2 ln3 3− 127

3456
π4 ln 3− 1

128
ln5 3 +

1573

144
ζ(5)

=
1

35

∞∑
k=0

1

36k

[
37

(12k + 1)5
− 5 · 37

(12k + 2)5
− 19 · 34

(12k + 4)5

− 35

(12k + 5)5
− 2 · 36

(12k + 6)5
− 34

(12k + 7)5

− 19 · 32

(12k + 8)5
− 5 · 33

(12k + 10)5
+

32

(12k + 11)5
− 10

(12k + 12)5

]
.

(71)

7 Conclusion

Using fairly straightforward methods, we have obtained several ternary BBP-type formulas,
which can now be added to the literature. In particular we proved the following formulas
(written in the now standard BBP notation [3]).

ln 2 = 1/(2 · 35)P((1, 36, 12, (35, 35, 0,−34,−33, 0,−32,−32, 0, 3, 1, 0)))

ln 3 = 1/36P((1, 36, 12, (36, 35, 0,−34,−34,−2 · 33,−33,−32, 0, 3, 3, 2)))

ln 3 = 1/27P((1,−27, 6, (27, 9, 0,−3,−3,−2)))

π =
√

3/35P((1, 36, 12, (35, 35, 2 · 34, 34, 33, 0,−32,−32,−6,−3,−1, 0)))

π = 2
√

3/35P((1, 36, 12, (35, 0,−34, 0, 33, 0,−32, 0, 3, 0,−1, 0)))

π = 2
√

3P((1,−3, 2, (1, 0)))

π2 = 2/27P((2, 36, 12, (35,−5 · 34, 0,−34,−33,−23 · 32,−32,−32, 0,−5, 1, 0)))

ln2 3 = 1/36P((2, 36, 12, (2 · 37,−2 · 38, 0,−2 · 13 · 34,−2 · 35,−23 · 35,−2 · 34,
− 2 · 13 · 32, 0,−2 · 34, 2 · 32,−8)))

π ln 3 = 2
√

3/3P((2,−27, 6, (9,−15,−18,−5, 1, 0)))

Cl2(π/3) =
√

3/9P((2,−27, 6, (9,−9,−12,−3, 1, 0)))

13ζ(3)− π2 ln 3 + ln3 3 = 2/35P((3, 36, 6, (36, 34, 34, 32, 32, 1)))

13ζ(3)− π2 ln 3 + ln3 3 = 2/3P((3, 9, 2, (9, 1)))

29π3/1296− π ln2 3/48 =
√

3/2/36P((3, 36, 12, (36,−5 · 35,
− 2 · 36,−5 · 34, 34, 0,−33, 5 · 32, 2 · 33, 5 · 3,−3, 0)))

127π4/5184− π2 ln2 3/32 + 5 ln4 3/192 = 1/36P((4, 36, 12, (37,−5 · 37, 0,
− 19 · 34,−35,−2 · 36,−34,−19 · 32, 0,−5 · 33, 32,−10)))
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11Cl4(π/3)− 29π3 ln 3/288 + π ln3 3/32 =
√

3/2P((4,−27, 6, (9,−15,−18,−5, 1, 0)))

π2 ln3 3/64− 127π4 ln 3/3456− ln5 3/128 + 1573ζ(5)/144 = 1/35P((5, 36, 12, (37,
− 5 · 37, 0,−19 · 34,−35,−2 · 36,−34,−19 · 32, 0,−5 · 33, 32,−10)))

We also proved the following ternary Zero Relations:

0 = P((1, 36, 12, (35,−5 · 34, 0,−34,−33,−23 · 32,−32,−32, 0,−5, 1, 0)))

0 = P((1, 36, 12, (35,−35,−22 · 34,−34, 33, 0,−32, 32, 3 · 22, 3,−1, 0))).
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