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A novel approach to the discovery of ternary
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Abstract: Using clear and straightforward approaches, we prove new ternary (base 3) digit
extraction BBP-type formulas for polylogarithm constants. Some known results are also
rediscovered in a more direct and elegant manner. An hitherto unproved degree 4 ternary
formula is also proved. Finally, a couple of ternary zero relations are established, which
prove two known but hitherto unproved formulas.
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1 Introduction

BBP-type formulas are formulas of the form

o= > 1Y ay/(kn+

where s, b, n and a; are integers, and « is some constant. Formulas of this type were
first introduced in a 1996 paper [1|, where a formula of this type for = was given. Such
formulas have the remarkable property that they permit one to calculate base-b digits of
the constant « beginning at an arbitrary starting position, by means of a simple algorithm
that requires almost no memory and (depending on how many digits are required) without
the need for multiple-precision arithmetic software [2]. Such formulas also have intriguing
connections to the age-old problem of understanding why the digits of various transcendental
constants appear “normal” — each string of m-long digits appears, in the limit, with frequency
1/6™ [3, 4, 5, 2].

While many binary BBP-type formulas are now known, only relatively few ternary (base-
3) BBP-type formulas have been discovered. This present paper is concerned with the sym-
bolic (that is, non-computer-search-based) discovery of ternary (base-3) BBP-type formulas
for polylogarithm constants. The methods used here aim to complement the experimental
approaches that have dominated the area. Through fundamental methods, a wide range
of interesting formulas will be obtained. In most cases, the procedure for obtaining the
ternary formulas shall consist mainly of evaluating a polylogarithm functional equation at
indicated coordinates and noting the following identities for the real and imaginary parts of
the polylogarithm function:



Re Lls e Z p* cos kx
(1)

Im Li, [pem} = Z Z%W ,
k=1

for p € [0,1], * € R and s € Z'. In the above equations, Li is the notation for the
polylogarithm function defined by

oo
Li,[z Z .|zl < 1.

When p = 1 we have

Lign+1[€m] = 012n+1 (ZL‘) + iGlQn_H(.T) s

where Gl and Cl are Clausen sums [6] defined, for n € Z* by

sin kx > cos kx
Cly,, (2 Z Clgpy1(r) = 2t

2n 7
' > (3)
cos kx sin kx
Glgn(llf) = W, GlQn_H([L’) = W .
k=1 k=1

We shall find the following formulas useful:

Glon (2) = (—1)+/227= 178, (/27 /!

m—

|_I

Cl,(z + 27r/m) . @

r=0

mTL
Here [n/2] denotes the integer part of n/2 and B,, are the Bernoulli polynomials defined by
te™ o= By(2)t"

t__ 1 |
e 1 ~ nl

2 Degree 1 Ternary BBP-type Formulas

In reference [7], several degree 1 BBP-type formulas in general bases are proven. In many of
the formulas, ternary formulas may be readily obtained by writing the base in each case as
a power of 3.

Here we now present a couple of interesting degree 1 ternary formulas.
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The following identities are easily verified:

[ i 1 i
Li; |— — —In3+ —
" f ( ) 2777
and (5)
it i\ | 1 i
L11 _%exp (E)_ 251n3—1n2+g
We therefore have the formulas:
In2 = ReLi {1 e <m)} Re Li {1 e (”)} (6)
n2= W |—exp|l — ]| — i |—exp | — ,
1 \/§ p 6 1 \/§ p B
1 T
In3 =2RelLi; |—exp | — 7
e (7)) o
and
m=06ImLi LeX i = 6Im Li Lex i (8)

It is also straightforward to verify that:

1H2:Li1 1 —L11 —1
3 3

and 9)
|1 ) 1
In3 = 2Li; [g} — Li; [—g] .

Based on the above formulas, we are now ready to derive explicit BBP-type formulas for
In2, In3 and 7.

2.1 Ternary formulas for In2

Using the first of Eq. (1), we note that

1 > cos(km/6)
Re Li {—exp( >] (—) S E—
L3 2\5)
1 «— 1 36 3°
:2-3ﬁz3k[12k+1+12k+2
=0 (10)
A R
126+4  12k+5 12k+6 12k+7
32 3 3 2
- - -

12k +8 12k +10 12k 4+ 11 | 12k 4+ 12

and



Re Li L e . = 1§: 3 3
SV ED T1ok+2 12k+4

k=0
33 32 3 2
— + - -
12k+6  12k+8 12k+10 ' 12k + 12

(11)

Subtracting Eq. (11) from Eq. (10) in accordance with Eq. (6), we obtain the following
ternary BBP-type formula for In 2:

1o 1 Z 3° N 3°
n2= —
2.35 P 36k 112k 4+1  12k+2
_ 34 _ 33 _ 32 _ 32 (12)
12k+4 12k+5 12k+7 12k+8

3 1
Tokyi0 " 12k+11} '

Note that an alternating version of Eq. (12), using the same scheme, is

1 & 1\ 9 9 3 1
m2=—35"(-— - - .
" 18;:0( 27) [6k+1+6k+2 6k + 4 6k+5]

From the first of Eq. (9), we can obtain yet another ternary formula for In 2, as follows:

1o 1 1

2l == — 1

i 5] =6 2 5 |31+ 353) 19
and
1] 11 3 1

Li, == = = — | = 14
11{ 3} 9;%[ 2k+1+2k+2] (14)

Subtracting Eq. (14) from Eq. (13) in accordance with the first of Eq. (9), we obtain

3 1 [ 1

In2=— — 15
" 2;942%1]’ (15)

which is listed in the BBP Compendium as formula (48).

2.2 Ternary formulas for In 3

Using Eq. (10) and Eq. (7), we obtain the following ternary BBP-type formula for In 3:

1 0 36 35
n3 = —
n 6; [12l<;+1 12k + 2

34 34 2.33 33 (16)
12k+4  12k+5 12k+6 12K+ 7
32 3 3 2
+ + +

12k +8 12k +10 @ 12k 4+ 11 | 12k + 12
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An alternating version of the above formula is

1 & 1\"[ 27 9 3 3 2
In3=— - — - —
. 27;( 27) [6k+1+6k’+2 6Gk+4 G6k+5 Gk+6
Combining Eq. (13) and Eq. (14) according to the second equality of Eq. (9) we obtain
another ternary BBP-type formula for In 3 as :

[e.9]

11 9 1
m3=-> — 1
n 9 £ 9k {2k+1+2k+2]’ an

which is Formula (51) of the Compendium.

2.3 Ternary formulas for 7

From Eq. (8), we immediately obtain the ternary BBP-type formulas

Z n 35 N 2.3
mw =
35 36k 12/{: +1 12k+2  12k+3
3 2 2
L 3 n 3 _ 3 _ 3 (18)
12k+4  12k+5 12k+7 12K+ 8
2-3 3 1

C12k+9 12k +10 12k + 11

and

- 34 33
”:iz n
P 12k+1 12k +3 ' 12k+5
S L3 1
12k+7  12k+9 12k + 11

(19)

An alternating version of Eq. (19) is

”ZQ@Z(_%Y [2k1+1}' 20)

2.4 Ternary Zero Relations

Eq. (15) may be rewritten in base 3%, length 12 as

In2 = ii 3* 3 + L (21)
35 12k+2 12k+6 12k + 10

Subtracting Eq. (21) from Eq. (12), we obtain the following ternary zero relation:




i 1 5.3 3
— 36k 12k+ 1 12k+2 12k + 4
33 23 . 32 32 32

C12k+5 12k+6  12k+7 12k +8
5 1

_12k+10+ 12k + 11

Note that

Eq. (22) = Compendium formula (104) — Compendium formula (103) = 0.

Subtracting Eq. (18) from Eq. (19), we obtain the zero relation:

i 1 243 243 324
36k |12k +1 12k+2 12k+3

81 L 27 9 " 9
12k+4  12k+5 12k+7 12k +8
12 3 1

+12k:+9+12k+10_ 12k + 11

k=0

Note also that

Eq. (24) = Compendium formula (104) + Compendium formula (103) =0

Egs. (23) and (25) therefore establish that

Compendium formula(103) =0
and

Compendium formula(104) = 0.

(22)

(23)

(25)

(26)

Thus the hitherto unproved formulas (103) and (104) in the BBP Compendium are now

proved.

3 Degree 2 Ternary BBP-type Formulas

The dilogarithm reflection formula (Eq. A.2.1.7 of [6]) is

2
% —InzIn(1 — x) = Lis[z] 4+ Lis[1 — z].

Putting x = — exp(in/3) in the above equation and taking real and imaginary parts gives

52 1 o
___12 — ReLio | —
> T3 3 = ReLiy [\/gexp(6>]

(27)



and

2 T mln3 . 1 s
§C12 <§> BET R Im Liy {% exp (E)} . (28)

A two-variable functional equation for dilogarithms, due to Kummer (Eq. A.2.1.19 of [6])
1s

Li {:[;(1_—@2} = Lz {_M} e {_%}

y(l —x)? 1—ux) l1—x (29)
CJz(1—vy) 1=y 1.,
Lip | — L —In“y.
o[y =] v
Choosing # = —exp(in/3) and y = exp(im/3) in Eq. (29) gives
™ W3 1] 1. [ 1

Note that the choice of x = —1 and y = 1/3 gives the same result.

Another two-variable functional equation for dilogarithms, due to Abel (Eq. A.2.1.16
of [6]) is

b [11&%1 e Llf—wl e {(lf@} (31)
~ Li [2] - Lia [y] — In(1 — 2) In(1 — y).

Choosing = = —exp(in/3) and y = exp(—in/3) in Eq. (31) and taking imaginary parts

gives
5 T mln3 . 1 T

3.1 Ternary Formula for 7

Solving Eq. (27) and Eq. (30) for 72, we obtain

|1 i pt , 1
7T2 = 36Re L12 {ﬁ exXp (g)‘| - 18L12 |:§:| + 9L12 |:—§:| . (33)

Writing
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oo

. 1 T 1 1 3° 3
el {ﬁ P (E)} =5 2w {(121@7 T17 " (12k o)

k=0
34 34 33
12k +4)2  (12k+5)2  (12k +6)? (34)
33 32
12k +7)2 (12k +8)?
3 2
+

(12k + 102 (12k + 12)2

and

1] 22 &K1 3° 34
Lip |51 =252 2 5+ >
3] T3 3%k [T(126+2)7 T (12K + 4)
33 32
+ (35)
(12k +6)2  (12k + 8)2
3 1

S ES AR IS

and combining them according to Eq. (33) gives the ternary BBP-type formula for 72 as

PR S I X
274 3% [(12k + 1) (12k +2)?
34 33 23 . 32
12k +4)2  (12k+5)2 (12K +6)? (36)
32 32
(126 +7)2  (12k +8)?
5 1

(12k 1 102 (12k + 1172

Incidentally, Eq. (36) is Formula (57) of the Compendium.

3.2 Ternary Formula for In*3

Solving Eq. (27) and Eq. (30) for In? 3, we obtain

) 1 o 1 ) 1
In?3 = 12 ReLi, {ﬁ exp (E)} — 10 Li, {5} + 5 Liy [—g] : (37)

Using Eqgs. (34) and (35) above in Eq. (37), we obtain the ternary BBP-type formula for
In?3 as

11



J 237 2.38
m?23=—3 — -
T kz:; 30k {(1% T12 (12k + 20
2.13. 34 2.3 93 . 35

12k +4)2  (12k+5)2  (12k+6)?
2. 34 213 - 32

(12k +7)2  (12k + 8)?
2.3 2. 32 8

12k 110 " (12k 1112 (12k + 1272

which is Formula (58) of the Compendium.

3.3 Ternary Formula for 7In3

Solving Eqs. (28) and (32) for 71n3 gives

11 T o1 i
mln3 = 48 Im Li, {% exp <5)} — 60 Im Lis {ﬁ exp (E)} i

Now
1 in V3 1\* 9 9
Im Liy | — Z) =X S
L L/geXp(f;)} 54];( 27) [(6k+1)2+(6k+2)2
+ 0 + 5 + L
(12k +3)2  (12k+4)? * (6k + 5)?
and

fm Lz {% P (%)] - g > <_2_17>k {(61@ i 12~ (6k i 32 " {6k i 5)?

k=0

Using Eqs. (40) and (41) in Eq. (39) leads to the ternary BBP-type formula

213 & 1\" 9 15 18
( ) [(6I<:+1)2 (6k +2)2  (6k + 3)?

In3 =— —
mln3 3 o7

5 1
6k + 4)2 * (6k + 5)2} '

3.4 Ternary Formula for Cly(7/3)
Solving Eqs. (28) and (32) for Cly(7/3) gives

Cl, (g) — 6Tm Li, {% exp (%)} — 6Tm Liy {% exp (%)} .

12
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Using Eqgs. (40) and (41) in Eq. (43) leads to the ternary BBP-type formula

VS ’
¢l (5) - ?3 2> (_%) {(Gk’il)? - <6ki2)2 - <6k1f3>2

- (44)
3 N 1
(6k +4)2  (6k+5)2|
4 Degree 3 Ternary BBP-type Formulas
A functional identity for trilogarithms (Eq. A.2.6.10 of [6]) is
I R oz —1 ) ) 1
L13 |:1 —|—[L‘:| —L13 |:[L’—|— 1:| = 2L13 [1 —I] +2L13 [1—{—[[‘]
1. 7
2 1
+—In(1+z)— -In*(1+z).
6 3
The use of x = 2 in the above equation gives
13 1 1 R . 1
E{@y—y¥m3+6h§3:2m3k}—LBLE}. (46)

Putting x = expin/3 in the functional equation and taking real and imaginary parts
gives

13 5 1., 1 i
22¢(3) = —7°1 — In®*3 =ReLiy |— — 4
18C(3> " n3+48 n” 3 = Re Li; [\/gexp((i)] (47)
and
2 1
—97r3——7r1n23
1296 48
. . (48)
4Tm Li {1 e (”H 5Tm Li {1 e (”)}
= —exp| —=— || — —exp | — .
3 \/g p 9 3 \/g p 6
Using
1 1 <=1 3° 34 33
Lis [+=| ==Y — |+ +
13{ 3} 36;3%{ 6k + 17 " (6k 127  (6k 1 3)° o)
N .3 L1
(6k +4)3 ~ (6k+5)®  (6k+6)3

leads to the ternary BBP-type formula

13



13¢(3) — 7*In3 +1n*3

2 o 1 36 34 3*
35 — 30k | (6k+1)3  (6k+2)3  (6k+3)? (50)
32 N 32 N 1
6k +4)3  (6k+5)% (6k+6)%]

T

A shorter version (length 2) of the above formula is

(e 9]

2 1 9 1
k=0

The ternary BBP-type formula that results from Eq. (47) is discussed elsewhere [§].

Next we obtain the ternary BBP-type formula that results from Eq. (48).

Im Li LeX E —ﬁii 3 — 3
IVETP\2 )] T 3 As |12k + 1P T (12k 1 3)

(52)
3 ¥, 3 1
(12k+5)3  (12k+7)%  (12k4+9) (12k+11)3
and
1 iT V3 1 3° 3° 2.3
Im Lis | — — )| = —
s L/geXp ( 6 )} 2. 36 % 3% {(1% TR T2k 127 (12k 4 3)
4 3 2
T S -~ (53)
(12k +4)3 ~ (12k+5)3  (12k+7)3
32 2.3 3 1

(12k +8)®  (12k+9)® (12k +10)?  (12k + 11)3

Combining Egs. (52) and (53) according to the prescription of Eq. (48), we arrive at

29 ) V3 = 1 36 5-3°

— 7’ — —7mln"3 = — —

1296 48 230 =30k [(12k + 1) (12k +2)3

2.3 5.3 N g 3
(12k +3)3  (12k+4)3 ~ (12k+5)3  (12k+7)3
5-32 2-3° 5-3 3
+ + + —
(12k +8)3 ~ (12k+9)3 ~ (12k +10)3  (12k + 11)3

(54)
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5 Degree 4 Ternary BBP-type Formulas

A two-variable functional equation for degree 4 polylogarithms (Eq. A.2.7.40 of [6]) reads

2 2 2
} 4Ly {_y;é] 4Ly {%} + L {%}

= 6 Lis [zy] + 6 Liy {x—ﬁ +6 Li, {—@] +6 Liy {_ﬁ}
n n

z?yn
Li, {_
§

§
+3 Liy [2n] + 3 Liy [y] + 3 Liy [ﬂ +3 Liy E] +3 Liy {—‘2—”} (55)
+3 Lig [_y_g] +3 Liy {—i} +3 Liy {—i} — 6 Liy [2]
n né ng

6 Lis[y] — 6 Liy {—ﬁ ~ 6 Liy {—%} +3/2 %2y,
where E=1—2,n=1—y.

Putting z = —exp (im/3) and y = exp (i7/3) in Eq. (55), simplifying and taking real and
imaginary parts, we obtain

1 . 1 .
— 12 Re Liy [—e”’/? — 3 Re Liy | —=¢"/6
V3 V3

11 1. T 1
12770 1, 5
- 2?3 — 2 '3
10368 6" M0 T3 ™

and

1, 1
— 12 Im Liy [—6”/2 +15 Im Liy | —=¢"/6
V3 V3

29 1 11 (57)
— 2 B3 — —xn® ——1(5>.

gea” P gem 3 gl 3

First we proceed to obtain the BBP-type formula invoked by Eq. (56).

Now,

1 iT 1 1 3° 3
Liy |— — | == — | =
RelLi, [\/geXp ( 2 )} 36 ; 365 { 12k +2)'  (12k + 4)° 58)
B 33 N 32 B 3 N 1

(126 +6)*  (12k+8)*  (12k+10)*  (12k+12)4

and
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1 LT 1 Z 1 3° 3

L' —_— =

fel [ﬁeXp<6)] 233 [<1zk+1>4+ (12K +2)*
34 34 233

(12k +4)*  (12k+5)*  (12k +6)* (59)
I S 3
(12k +7)*  (12k+8)*  (12k + 10)*

o0

2
okt 12)4} ‘

Also
1 24 0 1 5 4
Lig [#=| =25 3 + 3
3] 36 43% [T (12k+2)* ' (12k + 4)*
33 32 3
+ + (60)
(12k +6)'  (12k+8)'  (12k + 10)?
. 1
(12k + 12)*| -

Combining Egs. (58), (59) and (60) according to Eq. (56), we obtain the following degree 4
ternary BBP-type formula:

1277 7r2ln23+ 5In*3 1 i 1 37 537
5184 32 192 36430 | (12k+ 1) (12k +2)*

19 - 34 3° 236

(12k +4)*  (12k+5)*  (12k +6)* (61)
o3 193 5.3
(12k+7)*  (12k+8)*  (12k + 10)*
3 10
+ —

(12k +11)*  (12k +12)4|

Next we obtain the BBP-type formula invoked by Eq. (57).

Writing
1 T
ImLiy |—exp | —
[eo(5) 62
ED ST I R o2
27 —~ 27 (6k+1)* (6k+3)*  (6k+5)*
and

16



tm Lis {% P (%)} N g kf; <_2_17>k l(6k i DG i 2)1

6 3 1
k13 T (Gk+a)7  (Gk+5)

(63)

and combining these according to Eq. (57), we obtain the following degree 4 BBP-type
formula:

T 29 mln®3
11CL (=) — =731
C4<3> o883+ T
Sy s y
2 Z\"27) [(6k+ 17 Gk + 2 (64)
18 5 1

TGk+3)  (Gk+ 4 (Gk+5)

It is interesting to remark that Eq. (64) was also obtained by Broadhurst [9], using the
PSLQ Algorithm. We have thus found its formal proof for the first time, through Eq. (57)!

6 Degree 5 Ternary BBP-type Formulas

The following degree 5 polylogarithm identity is derived in [10]

ypb U yn

S S R K E Y B D I G
+Ll5[ 5 %Lg{ ¢ ]+L15 {fyn}JrL% [55}

— 9Lis [zy] — 9Lis [28] — 9 Lis [2n] — 9 Lis m — 9 Lis m

B

—9Li5[ ] — 9 Li5 [ay] — 9Li5 [ 5] — 9 Li5 [a 7]
(65)

— 9 Lis { ] —9Lis [—} — 9 Lis [%} — 9Lis[¢y] — 9Lis [€ 5]

— 9Lis [€ ] — 9 Lis M —9Lis [g] 9Ly H
+ 18 Lis [2] 4+ 18 Lis [o] 4 18 Lis [€] + 18 Lis [y] + 18 Lis [3]
+ 18 Lis [] — 18¢(5) = 3/10 (In€¢)° +3/4 (Iny — Inz) (In¢)*

+3/2 (3Iny —Inn) (nn)*(n&)’ +1/2a%(Iné -3 Inn) (In&)* +1/57* In¢.
Here{ =1—z,n=1—y,a=—z/{ and 5= —y/n.

Putting x = —exp (im/3) and y = exp (i7/3) in Eq. (65) and simplifying, gives

17



1 2 3

—2n33 - =2

61" 0T 3u56"
3

12 1 1573
! 41n3—381n53+1z—4C(5)

On taking real parts

1, .. 12T, 1 .. 1573

23— 2 A3 - — P34 265

i 03— g I3 — o3+ —7C ()
1

1 . 3 1
= 18 Re Lis {—6”/6 + ZLig |—=| —3Lis | =] .
V3 2 3 3

Now

18 Re Li L in/o —18§: 1 kicos ke
15 \/56 = £ \/3 k}5 6

1l 38 37 30

T 36 2 36k {(12/&: 1P T2k 12p  (12k 44

2.3 35 34

12k +5)°  (12k+6)5  (12k+7)5  (12k+8)°
3 3? 2. 32

2k + 10p5  (12k+ 11 (12k + 12)5] ’

3 .11 3&/ 1\"1
s 5252 (5)

k=1

T

_15‘31 —36. 24 N 3.2t 32!
- 36 36k | (12k +2)5  (12k + 4)5 12k + 6)°
k=0
N 33 .24 32. 924 N 3.24
(12k +8)5  (12k +10)>  (12k + 12)5

and

k=1
_1%1 3629 N 3529 N 3. 28
30430k [(126+2)°  (12k+4)5  (12k+6)°
N 33.2° N 32.2° N 3.2
(12k +8)5 * (12k +10)> =~ (12k 4+ 12)5|

18

1 1 1, 1,
=5 s |—5| —3Lis | 5| +9Li —e”/ﬁ} +9Li {—e—”/ﬁ}.
ot o] o g o Gy o

(66)

(68)

(69)

(70)



Using Eq. (68), (69) and (70) in Eq. (67), we obtain the ternary BBP-type formula

1, 4 127 , 1. 5. 1573
— 7 n*3 - —7'ln3 - —1 —
61" M3 g™ 3 T g3 3 ¢)
11 37 5-37 19 - 34
C 3L 30k (126 4+ 1) (12k+2)°  (12k +4)5
=0 (71)
3° 236 3t
(12k +5)5  (12k+6)5  (12k+7)°
19 - 32 5.3 32 10

12k + 8¢  (12k+ 100  (12k+11p  (12k+ 12)°

7 Conclusion

Using fairly straightforward methods, we have obtained several ternary BBP-type formulas,
which can now be added to the literature. In particular we proved the following formulas
(written in the now standard BBP notation [3]).

In2=1/(2-3%)P((1,3%,12,(3% 3,0, —3* —33,0, 3%, —3%,0,3,1,0)))

In3 =1/3%P((1,3°12,(3°% 3% 0, 3% —3% —2-3% 3% -32,0,3,3,2)))

In3 = 1/27P((1, —27,6,(27,9,0, =3, =3, —2)))

™ =+/3/3°P((1,3%,12,(3°,3% 234 3% 3% 0,32, —32, —6,-3,—1,0)))

™= 2v/3/3°P((1,3°%,12,(3%0,-3%0,3%0,-3%0,3,0,—1,0)))

7 = 2v/3P((1,-3,2,(1,0)))

2 =2/27P((2,3%,12, (3%, -5 - 3,0, -3%, —33, —23 .32 —3%2, -32,0,-5,1,0)))

In*3 = 1/3P((2,3%,12,(2-37,-2-3%0,—2-13-3% —2-3° —2%.3% —2.3%
—-2-13-32,0,—-2-3%,2-3% -8)))

71n3 = 2¢/3/3P((2, —27,6, (9, —15, —18, —5,1,0)))

Cly(7/3) = v/3/9P((2, —27,6, (9, -9, —12, —=3,1,0)))

13¢(3) — m2In3 4+ In®3 = 2/3°P((3, 3%, 6, (3%, 3%, 3%, 32,32, 1)))
13¢(3) = 7*In3 + In*3 = 2/3P((3,9,2,(9,1)))

2073 /1296 — mw1n?3/48 = \/3/2/3%P((3,3%,12, (3%, =5 - 3°,
—2.36 -5.34340,-3%5-322-3%5-3,-3,0)))

1277% /5184 — 721n*3/32 4 51n* 3/192 = 1/3%P((4, 3%,12, (37, =5 - 37,0,
—19-3% -3%,-2-35 —3% —19-32,0, -5 - 3% 3%, —10)))
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11CLy(7/3) — 2973 1n 3/288 + 7 In® 3/32 = v/3/2P((4, —27,6, (9, —15, —18, —5,1,0)))

721n°3/64 — 12774 1n3/3456 — In® 3/128 + 1573¢(5)/144 = 1/35P((5, 35, 12, (37,
—5-.37,0,—19-3% —35,—2.36 —3% —19.32,0,—5- 33,32, —10)))

We also proved the following ternary Zero Relations:

0=P((1,3%12,(3% —5-3%,0, 3%, —33 —23.3% —3% —32,0,-5,1,0)))

0 =P((1,35,12, (3%, —35,—2% . 34 —34 33, 0,32 32,322 3, —1,0))).
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