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Abstract: Let m  be a positive integer, p  be an odd prime, and mp
=  / (pm) be the ring 

of integers modulo pm. Let 1 2( ) ( , ,..., )nQ Q x x x=x  be a nonsingular quadratic form with 
integer coefficients. In this paper we shall prove that any nonsingular quadratic form ( )Q x  
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1. Introduction 
 
In this section we simply mention the basic concepts of quadratic forms which we shall 
need throughout. For details the reader is referred to [1], [2], and [3]. 

A quadratic form ( )Q x  over  is a polynomial of the type 
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Observe that 
Q(x) = xtAx 

where 
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Here xt denotes the transpose of the matrix x. On the other hand, note that if the matrix A is 
diagonal (An n×n matrix A is diagonal if 0ija =  whenever ji ≠ ), then the corresponding 
quadratic form Q  has the diagonal representation  

22
111)( nnn

t xaxaAQ ++== Kxxx , 

i.e., the quadratic form will contain no "cross product"  terms. In the same way we call Q  a 
diagonal quadratic form (mod pm) for any prime power pm if Q  contains no "cross 
product"  terms when read (mod pm). The determinant of Q , abbreviated detQ , is defined 
to be the determinant of the matrix QA . We say that Q(x) is nonsingular over  if detQ ≠ 0. 
Similarly for any odd prime power p

m we say Q(x) is nonsingular mod pm if Qp det|/ . 
Again let pm be an odd prime power. Let Q(x) and )(~ xQ  be two quadratic forms 

over  with associated matrices QQ AA ~, , respectively. We now view the entries of these 
matrices as elements of /(pm), and regard 1/2 as the multiplicative inverse of 2 (mod pm). 
(Alternatively we can replace 1/2 with (pm + 1) / 2 and regard QA  as having integer 

entries). We say that Q(x) is equivalent to )(mod)(~ mpQ x , written )(mod)(~~)( mpQQ xx , 
if there is an invertible n×n matrix T over /(pm), such that ))(mod()(~ mpTQQ xx = , that is 
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It is clear that “~”  is an equivalence relation. Note that 
)(mod)(detdet~det 2 mpTQQ ⋅= . 

Example: Let pm be any odd prime power and 2 2
1 1 2 2( )Q x x x x= + +x . Then  
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By making the simple observation that  
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we can write 
)(mod)( mt pAQ xxx ′≡ , 

with 
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Note that since p is odd, the entries of A′  are all integers. Thus we may assume that 
AQ∈M2×2( ) when working with congruences modulo odd primes.   
 
 
2. Diagonalization of quadratic forms modulo pm 
 
Theorem 1. For any odd prime power pm, and nonsingular quadratic form Q(x) over , 

( )Q x is equivalent to a diagonal quadratic form (modulo pm). 
Proof. We proceed by induction on m. When m = 1, it is well known (see [4]) that Q can be 
diagonalized over the finite field p. Say  
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for some T, D∈Mn×n ( ) with T nonsingular (mod p) and D a diagonal matrix. Let us lift this 
to a solution (mod p2). Let  
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where XATY Q
t=  and pTATDB Q

t /)( −= . Note that B is a symmetric matrix with integer 
entries. Let 
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Then + =tY Y B . Thus, we are left with solving the congruence 
).(mod pYXAT Q

t ≡  

0 
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Since T and AQ are nonsingular (mod p), this equation has a unique solution 

)(mod)( 11 pYTAX t
Q

−−≡ . 
     In the same manner one can lift a solution (mod pm), to (mod pm+1) for any m. Indeed, 
proceeding as above, suppose that 

)(mod mt pDATT ≡ , 
for some T, D ∈ Mn×n( ) with T nonsingular (mod p) and D a diagonal matrix. Let 

XpTU m+= , 
where X is a matrix of variables and solve 
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where  AXTY t=  and mt pATTDB /)( −=  is a symmetric matrix with integer entries. Let 
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Then + =tY Y B  (We note that the choice of Y  is not unique). Hence, we are left with 
solving the congruence 

)(mod pYAXT t ≡ . 
As T and A are nonsingular (mod p), this equation has a unique solution 

)(mod)( 11 mt pYTAX −−≡ . 
This completes the induction step.   
 
Examples: 1. Let  
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Note that Q(x,y) is already a diagonal form when read (mod p). We proceed to diagonalize 
Q(x,y) (mod p2) . 

0 
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Thus ( )Q x )(mod~ 222 pyx + . 
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What happens if A  singular? 
Here A  is not invertible, so we cannot directly follow the method given in our proof. Let us 
try to solve  

)(mod pYAXT t ≡ . 
First, we see that 2=T I  since A  is already diagonal (mod p ) . Let 2
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     Our proof of Theorem 1 actually yields the stronger result. 
 
Corollary 1. If p  is an odd prime, Q(x) is a quadratic form over , nonsingular (mod p) 
and equivalent to diagonal form )(mod

1
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i ii∑ =
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Note: This fails for nonsingular forms.  
Indeed, )(mod~ 222 pxpyx + , but )(mod~ 2222 pxpyx /+ .   
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