

## A note on diagonalization of integral quadratic forms modulo $p^m$

Ali H. Hakami

Department of Mathematics, King Khalid University,  
P.O.Box 9004, Abha, Postal Code: 61431, Saudi Arabia,  
E-mail: [aalhakami@kku.edu.sa](mailto:aalhakami@kku.edu.sa)

**Abstract:** Let  $m$  be a positive integer,  $p$  be an odd prime, and  $\mathbb{Z}_{p^m} = \mathbb{Z} / (p^m)$  be the ring of integers modulo  $p^m$ . Let  $Q(\mathbf{x}) = Q(x_1, x_2, \dots, x_n)$  be a nonsingular quadratic form with integer coefficients. In this paper we shall prove that any nonsingular quadratic form  $Q(\mathbf{x})$  over  $\mathbb{Z}$ ,  $Q(\mathbf{x})$  is equivalent to a diagonal quadratic form (modulo  $p^m$ ).

**Keywords:** Integral quadratic form, Nonsingular quadratic form, Diagonalization quadratic form modulo prime.

**AMS Classification:** 11E08

### 1. Introduction

In this section we simply mention the basic concepts of quadratic forms which we shall need throughout. For details the reader is referred to [1], [2], and [3].

A quadratic form  $Q(\mathbf{x})$  over  $\mathbb{Z}$  is a polynomial of the type

$$Q(\mathbf{x}) = Q(x_1, x_2, \dots, x_n) = \sum_{1 \leq i \leq j \leq n} a_{ij} x_i x_j,$$

with  $a_{ij} \in \mathbb{Z}$ ,  $1 \leq i \leq j \leq n$ . We associate with  $Q(\mathbf{x})$  a symmetric  $n \times n$  matrix  $A = A_Q$  given by

$$A_Q = \begin{bmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} & \cdots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{21} & a_{22} & \frac{1}{2}a_{23} & \cdots & \frac{1}{2}a_{2n} \\ \frac{1}{2}a_{31} & \frac{1}{2}a_{32} & a_{33} & \cdots & \frac{1}{2}a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}a_{n1} & \frac{1}{2}a_{n2} & \frac{1}{2}a_{n3} & \cdots & a_{nn} \end{bmatrix}.$$

That is

$$A = [a_{ij}^*]_{n \times n}, \quad a_{ij}^* = \begin{cases} \frac{1}{2}a_{ij} & \text{for } i < j \\ \frac{1}{2}a_{ji} & \text{for } i > j \\ a_{ii} & \text{for } i = j \end{cases}$$

Observe that

$$Q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x}$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{x}^t = [x_1 \ x_2 \ \dots \ x_n].$$

Here  $\mathbf{x}^t$  denotes the transpose of the matrix  $\mathbf{x}$ . On the other hand, note that if the matrix  $A$  is diagonal (An  $n \times n$  matrix  $A$  is diagonal if  $a_{ij} = 0$  whenever  $i \neq j$ ), then the corresponding quadratic form  $Q$  has the diagonal representation

$$Q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x} = a_{11}x_1^2 + \dots + a_{nn}x_n^2,$$

i.e., the quadratic form will contain no "cross product" terms. In the same way we call  $Q$  a diagonal quadratic form  $(\bmod p^m)$  for any prime power  $p^m$  if  $Q$  contains no "cross product" terms when read  $(\bmod p^m)$ . The determinant of  $Q$ , abbreviated  $\det Q$ , is defined to be the determinant of the matrix  $A_Q$ . We say that  $Q(\mathbf{x})$  is nonsingular over  $\mathbb{Z}$  if  $\det Q \neq 0$ . Similarly for any odd prime power  $p^m$  we say  $Q(\mathbf{x})$  is nonsingular mod  $p^m$  if  $p \nmid \det Q$ .

Again let  $p^m$  be an odd prime power. Let  $Q(\mathbf{x})$  and  $\tilde{Q}(\mathbf{x})$  be two quadratic forms over  $\mathbb{Z}$  with associated matrices  $A_Q, A_{\tilde{Q}}$ , respectively. We now view the entries of these matrices as elements of  $\mathbb{Z}/(p^m)$ , and regard  $1/2$  as the multiplicative inverse of  $2$   $(\bmod p^m)$ . (Alternatively we can replace  $1/2$  with  $(p^m + 1)/2$  and regard  $A_Q$  as having integer entries). We say that  $Q(\mathbf{x})$  is equivalent to  $\tilde{Q}(\mathbf{x})$   $(\bmod p^m)$ , written  $Q(\mathbf{x}) \sim \tilde{Q}(\mathbf{x})$   $(\bmod p^m)$ , if there is an invertible  $n \times n$  matrix  $T$  over  $\mathbb{Z}/(p^m)$ , such that  $\tilde{Q}(\mathbf{x}) = Q(T\mathbf{x})$   $(\bmod p^m)$ , that is

$$A_{\tilde{Q}} \equiv T^t A_Q T \pmod{p^m}.$$

It is clear that " $\sim$ " is an equivalence relation. Note that

$$\det \tilde{Q} = \det Q \cdot (\det T)^2 \pmod{p^m}.$$

**Example:** Let  $p^m$  be any odd prime power and  $Q(\mathbf{x}) = x_1^2 + x_1x_2 + x_2^2$ . Then

$$Q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x},$$

where

$$A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}.$$

That is

$$Q(\mathbf{x}) = x_1^2 + x_1x_2 + x_2^2 = \underbrace{[x_1 \ x_2]}_{\mathbf{x}^t} \underbrace{\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}}_{A_Q} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}}.$$

By making the simple observation that

$$Q(\mathbf{x}) = x_1^2 + x_1x_2 + x_2^2 \equiv x_1^2 + \underbrace{(p^m + 1)x_1x_2 + x_2^2}_{\text{even}} \pmod{p^m},$$

we can write

$$Q(\mathbf{x}) \equiv \mathbf{x}^t A' \mathbf{x} \pmod{p^m},$$

with

$$A' = \begin{bmatrix} 1 & \frac{p^m+1}{2} \\ \frac{p^m+1}{2} & 1 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Z}).$$

Note that since  $p$  is odd, the entries of  $A'$  are all integers. Thus we may assume that  $A_Q \in M_{2 \times 2}(\mathbb{Z})$  when working with congruences modulo odd primes.

## 2. Diagonalization of quadratic forms modulo $p^m$

**Theorem 1.** For any odd prime power  $p^m$ , and nonsingular quadratic form  $Q(\mathbf{x})$  over  $\mathbb{Z}$ ,  $Q(\mathbf{x})$  is equivalent to a diagonal quadratic form (modulo  $p^m$ ).

**Proof.** We proceed by induction on  $m$ . When  $m = 1$ , it is well known (see [4]) that  $Q$  can be diagonalized over the finite field  $\mathbb{F}_p$ . Say

$$T^t A_Q T \equiv D \pmod{p^m},$$

for some  $T, D \in M_{n \times n}(\mathbb{Z})$  with  $T$  nonsingular  $\pmod{p}$  and  $D$  a diagonal matrix. Let us lift this to a solution  $\pmod{p^2}$ . Let

$$U = T + pX,$$

where  $X = [x_{ij}]$  is a matrix of variables. We wish to solve

$$U^t A_Q U \equiv D \pmod{p^2}$$

This is equivalent to

$$\begin{aligned} & (T + pX)^t A_Q (T + pX) \equiv D \pmod{p^2} \\ \Leftrightarrow & T^t AT + T^t A_Q pX + pX^t A_Q T \equiv D \pmod{p^2} \\ \Leftrightarrow & \frac{T^t A_Q T - D}{p} + \underbrace{T^t A_Q X + X^t A_Q T}_{Y} \equiv 0 \pmod{p} \\ \Leftrightarrow & Y + Y^t \equiv \underbrace{\frac{D - T^t A_Q T}{p}}_B \pmod{p} \end{aligned}$$

where  $Y = T^t A_Q X$  and  $B = (D - T^t A_Q T)/p$ . Note that  $B$  is a symmetric matrix with integer entries. Let

$$Y \equiv \begin{bmatrix} \frac{1}{2}b_{11} & & & & 0 \\ b_{21} & \frac{1}{2}b_{22} & & & \\ b_{31} & b_{32} & \frac{1}{2}b_{33} & & \\ \vdots & \vdots & \vdots & \ddots & \\ b_{n1} & b_{n2} & b_{n3} & \cdots & \frac{1}{2}b_{nn} \end{bmatrix} \pmod{p^2}.$$

Then  $Y + Y^t = B$ . Thus, we are left with solving the congruence

$$T^t A_Q X \equiv Y \pmod{p}.$$

Since  $T$  and  $A_Q$  are nonsingular  $(\bmod p)$ , this equation has a unique solution

$$X \equiv A_Q^{-1}(T')^{-1}Y \pmod{p}.$$

In the same manner one can lift a solution  $(\bmod p^m)$ , to  $(\bmod p^{m+1})$  for any  $m$ . Indeed, proceeding as above, suppose that

$$T'AT \equiv D \pmod{p^m},$$

for some  $T, D \in M_{n \times n}(\mathbb{Z})$  with  $T$  nonsingular  $(\bmod p)$  and  $D$  a diagonal matrix. Let

$$U = T + p^m X,$$

where  $X$  is a matrix of variables and solve

$$U' A_Q U \equiv D \pmod{p^{m+1}}.$$

This is equivalent to

$$\begin{aligned} & (T + p^m X)' A_Q (T + p^m X) \equiv D \pmod{p^{m+1}} \\ \Leftrightarrow & T' A_Q T + T' A_Q p^m X + p^m X' A_Q T \equiv D \pmod{p^{m+1}} \\ \Leftrightarrow & \frac{T' A_Q T - D}{p^m} + \underbrace{T' A_Q X + X' A_Q T}_{Y} \equiv 0 \pmod{p} \\ \Leftrightarrow & Y + Y' \equiv \underbrace{\frac{D - T' A_Q T}{p^m}}_B \pmod{p} \end{aligned}$$

where  $Y = T'AX$  and  $B = (D - T'AT)/p^m$  is a symmetric matrix with integer entries. Let

$$Y \equiv \begin{bmatrix} \frac{1}{2}\beta_{11} & & & & 0 \\ \beta_{21} & \frac{1}{2}\beta_{22} & & & \\ \beta_{31} & \beta_{32} & \frac{1}{2}\beta_{33} & & \\ \vdots & \vdots & \vdots & \ddots & \\ \beta_{n1} & \beta_{n2} & \beta_{n3} & \cdots & \frac{1}{2}\beta_{nn} \end{bmatrix} \pmod{p^m}.$$

Then  $Y + Y' = B$  (We note that the choice of  $Y$  is not unique). Hence, we are left with solving the congruence

$$T'AX \equiv Y \pmod{p}.$$

As  $T$  and  $A$  are nonsingular  $(\bmod p)$ , this equation has a unique solution

$$X \equiv A^{-1}(T')^{-1}Y \pmod{p^m}.$$

This completes the induction step.  $\square$

**Examples: 1.** Let

$$Q(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & \frac{p}{2} \\ \frac{p}{2} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + pxy + y^2.$$

Note that  $Q(x, y)$  is already a diagonal form when read  $(\bmod p)$ . We proceed to diagonalize  $Q(x, y) \pmod{p^2}$ .

$$T = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$B = \frac{D - T^t A T}{p} = \frac{1}{p} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & \frac{p}{2} \\ \frac{p}{2} & 1 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

$$Y = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix}.$$

Solve  $AX \equiv Y \pmod{p}$ ,

$$\begin{aligned} & \begin{bmatrix} 1 & \frac{p}{2} \\ \frac{p}{2} & 1 \end{bmatrix} \begin{bmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{bmatrix} \equiv \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix} \pmod{p} \\ \Leftrightarrow & \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{bmatrix} \equiv -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \pmod{p} \\ \Leftrightarrow & \begin{bmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{bmatrix} \equiv \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix} \pmod{p} \end{aligned}$$

**Check :**

$$U = T + pX = -\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + p \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ -\frac{p}{2} & 1 \end{bmatrix}$$

$$U^t A U = \begin{bmatrix} 1 & -\frac{p}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{p}{2} \\ -\frac{p}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{p}{2} \\ 0 & 1 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{p^2}.$$

Thus  $Q(\mathbf{x}) \sim x^2 + y^2 \pmod{p^2}$ .

**2.** Let

$$Q(x, y) = \begin{bmatrix} x & y \end{bmatrix} \underbrace{\begin{bmatrix} 1 & \frac{p}{2} \\ \frac{p}{2} & 0 \end{bmatrix}}_A \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + pxy \equiv x^2 \pmod{p}.$$

What happens if  $A$  singular?

Here  $A$  is not invertible, so we cannot directly follow the method given in our proof. Let us try to solve

$$T^t A X \equiv Y \pmod{p}.$$

First, we see that  $T = I_2$  since  $A$  is already diagonal  $\pmod{p}$ . Let  $\frac{1}{2} \mapsto \frac{(p^2+1)}{2}$ . Then

$$A = \begin{bmatrix} 1 & \frac{p}{2} \\ \frac{p}{2} & 0 \end{bmatrix} \equiv \begin{bmatrix} 1 & p \frac{p^2+1}{2} \\ p \frac{p^2+1}{2} & 0 \end{bmatrix} \pmod{p^2},$$

and the latter matrix has integer entries.

$$B = \frac{D-A}{p} = \frac{1}{p} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & p \frac{p^2+1}{2} \\ p \frac{p^2+1}{2} & 1 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{p^2+1}{2} \\ -\frac{p^2+1}{2} & 0 \end{bmatrix}.$$

If we proceed as in the proof we would let

$$Y = \begin{bmatrix} 0 & 0 \\ -\frac{p^2+1}{2} & 0 \end{bmatrix} \pmod{p^2}.$$

Now solve

$$\begin{bmatrix} 1 & p \frac{p^2+1}{2} \\ p \frac{p^2+1}{2} & 0 \end{bmatrix} X \equiv \begin{bmatrix} 0 & 0 \\ -\frac{p^2+1}{2} & 0 \end{bmatrix} \pmod{p}.$$

This is equivalent to

$$\begin{aligned} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} &\equiv \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix} \pmod{p} \\ \Leftrightarrow \begin{bmatrix} x_{11} & x_{12} \\ 0 & 0 \end{bmatrix} &\equiv \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 0 \end{bmatrix} \pmod{p}, \end{aligned}$$

which give us a contradiction ( $0 = -\frac{1}{2}$ ) and hence there is no solution of this system.

Next, let us try the choice

$$Y = \begin{bmatrix} 0 & \alpha \\ -\frac{p^2+1}{2} - \alpha & 0 \end{bmatrix} \pmod{p^2}.$$

Then

$$Y + Y^t = \begin{bmatrix} 0 & \alpha \\ -\frac{p^2+1}{2} - \alpha & 0 \end{bmatrix} + \begin{bmatrix} 0 & -\frac{p^2+1}{2} - \alpha \\ \alpha & 0 \end{bmatrix} = B \pmod{p^2}.$$

Solve

$$\begin{bmatrix} 1 & p \frac{p^2+1}{2} \\ p \frac{p^2+1}{2} & 0 \end{bmatrix} X \equiv \begin{bmatrix} 0 & \alpha \\ -\frac{p^2+1}{2} - \alpha & 0 \end{bmatrix} \pmod{p},$$

or, equivalently

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \equiv \begin{bmatrix} 0 & 0 + \alpha \\ -\frac{1}{2} - \alpha & 0 \end{bmatrix} \pmod{p}.$$

Let  $\alpha = -\frac{1}{2}$ . Then obviously

$$\begin{bmatrix} x_{11} & x_{12} \\ 0 & 0 \end{bmatrix} \equiv \begin{bmatrix} 0 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \pmod{p},$$

so that

$$X = \begin{bmatrix} 0 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix}.$$

Hence, it follows one can make the change of variable

$$x \mapsto x + p \frac{p-1}{2} y, \quad y \mapsto y$$

to diagonalize the quadratic form  $Q(x, y) \pmod{p^2}$ . Indeed,

$$\begin{aligned} x^2 + pxy &\sim \left( x + \frac{p-1}{2} py \right)^2 + p \left( x + \frac{p-1}{2} py \right) y \\ &\equiv (p-1)pxy + x^2 + pxy \pmod{p^2} \\ &\equiv x^2 \pmod{p^2} \end{aligned}$$

Our proof of Theorem 1 actually yields the stronger result.

**Corollary 1.** *If  $p$  is an odd prime,  $Q(\mathbf{x})$  is a quadratic form over  $\mathbb{Z}$ , nonsingular  $\pmod{p}$  and equivalent to diagonal form  $\sum_{i=1}^n a_i x_i^2 \pmod{p}$ , then  $Q(\mathbf{x})$  is equivalent to the same diagonal form  $\sum_{i=1}^n a_i x_i^2 \pmod{p^m}$  for any  $m$ .*

**Note:** This fails for nonsingular forms.

Indeed,  $x^2 + py^2 \sim x^2 \pmod{p}$ , but  $x^2 + py^2 \not\sim x^2 \pmod{p^2}$ .

## References

- [1] Larry J. Gerstein, *Basic Quadratic Forms*, American Mathematical Society, 2008.
- [2] G. L. Watson, *Integral Quadratic Forms*, Cambridge University Press, 1960.
- [3] Michel Artin, *Algebra*, Prentice-Hall, New Jersey, 1991.
- [4] R. Lidl and H. Niederreiter, *Encyclopedia of Mathematics and its Applications, Finite Fields*, Addison-Wesley Publishing Company, 1983.