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Abstract

The paper is a continuation of [I] and [2]. The considerations are over the class of
multiplicative functions with strictly positive values and more precisely, over the pairs
(f,g) of such functions, which have a special property, called in the paper property
S. For every two such pairs (f1,g) and (f2,9), with different f; and fs, a sufficient
condition for the coincidence of the maximum (respectively of the minimum) of the
numbers f1(d)g (%) and fa(d)g ( %) , where d runs over all proper divisors of an arbitrary
composite number n > 1, is given. Some applications of the results are made for several
classical multiplicative functions like Euler’s totient function ¢, Dedekind’s function
1, the sum of all divisors of m, i.e. o(m), the number of all divisors of m, i.e. 7(m),
and 2¢0™) | where w(m) is the number of all prime divisors of m.
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Used Denotations: Z* - the set of all non-negative integers; N - the set of all positive
integers; [P - the set of all prime numbers; for a given n € N D’ denotes the set of all proper
divisors of n, i.e. different than 1 and n; for n > 1 w(n) denotes the number of all prime

divisors of n (w(1) = 0); for a,b € N ged(a, b) denotes the greatest common divisor of a and
b; for p € P ord,n denotes the largest exponent k for which p* is a divisor of n.

1 Introduction

The present paper is a continuation of the research from [I] and [2]. We remind that an
artihmetic function F is said to be multiplicative if for every a,b € N such that ged(a,b) =1
it is fulfilled

F(ab) = F(a)F(b)
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Therefore, F'(1) =1if FF # 0.

Some classical examples of multiplicative functions that have an importnat meaning
in Number Theory are Euler’s totient function (the function ¢), Dedekind’s function (the
function 1), sum of all divisors of a positive integer (the function o) and the number of
all divisors of a positive integer (the function 7). When n > 1 these functions admit the
following multiplicative representations:

pln
1
v =nJT (14);
pln p
14+ord,n
el
J(n) - p _ 1 )
pln
7(n) = H (1+ord,n),
pln

where p runs over all prime divisors of n.
Another example of classical multiplicative function is 2¢™. For all of the above multi-
plicative functions see [3] and [4, p. 20, p. 33, p. 39, p. 180, p. 231, p. 284].

2 Main results

Below we shall consider only the class M of all multiplicative functions with strictly positive
values. Our investigation is based on some pairs of multiplicative functions from the class
M which have a special property (called in the paper property S). For such pairs in [I] and

[2] the question about finding the gré%g {f(d)g (%)} and drrel]%)r% {f(d)g (%)} ,whenn > 11is a

composite number, is completely solved. Since some pairs of classical multiplicative func-

tions with strictly positive values (like (¢, o), (@, %), (7, ),(2°0M  g), (2907 ), (27, 1)))have

property S, we will apply our results to them obtaining as a corollary some new theorems.
The main results of the paper are Theorem [3, Theorem 4] and Corollaries [1H4]

Definition. Let f,g € M. We say that the ordered pair (f,g) has the property S when one
of the following two cases is fulfilled:

(i) VpeP &Vm e Z*
H9 (k) < £ g(p™ ") (1)

is an increasing function (not necessarily strictly) with respect to k € [0,m] N Z*

(it) Vp € P & Vm € Z7 the function HI9, from is a decreasing function (not necessarily
strictly) with respect to k € [0,m|NZ*

Our investigation is based on the following two theorems which are contained in [I]
Theorem 5:
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Theorem 1. Let f,g € M and the pair (f,g) has the property S (satisfying (i)). If n > 1 is
a composite number, then:

mas { (g (1) } = mas {g<p>f (g)} )
win {f(d)g (g)} = min {f(p)g (g) } , (3)

where p runs over all prime divisors of n.

Theorem 2. Let f,g € M and the pair (f,g) has the property S (satisfying (ii)). If n > 1
1s a composite number, then:

max {f(d)g (%)} = max {f(p)g (%) } (4)
win {0 (5)} = minfor ()} 5)

where p runs over all prime divisors of n.

Theorem [If and Theorem [2| provide some important corollaries. Namely let f; € M, j =
1,2 be two different functions such that they satisfy the condition:

fip) = falp) Vp e P
In this case from Theorem [1] ((3)) as a corollary we obtain:

Theorem 3. Let g € M and the pairs (fj,g),7 = 1,2 have the property S (satisfying (i)).
Then for every composite number n > 1

. n . n
in {4109 (3)} = min {2 () ©
Also from Theorem 2] ((4))) as a corollary we obtain:

Theorem 4. Let g € M and the pairs (f;,9),j = 1,2 have the property S (satisfying (ii)).
Then for every composite number n > 1

pas (10 (3)} =g {1 () g

n

Since when d runs over all proper divisors of n, & runs over the same divisors too and

having in mind the following

Remark. If f,g € M and the pair (f,g) has the property S (satisfying (i)), then the pair
(g, f) has the property S (satisfying (ii)).

it is clear that other variants of such theorems (like Theorem (3| and Theorem |4)) cannot be
deduced from Theorem [Il and Theorem 21
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2.1 Application of the results

First we shall make an application of Theorem [3| Putting fi = o, fo = ¥ we have

filp) = fo(lp) VD € P

since
o(p) =1(p)=p+1

Now, let ¢ = . In this case it is easy to verify that the pairs (o,¢) and (¢, p) have the
property S (satisfying (i)). Therefore, we obtain from Theorem [3}

Corollary 1. Let n > 1 be a composite number. Then

min {o(d)e ()} = min {w(d)e (7) }

In the same manner, putting g = 7 and observing that the pairs (o, 7) and (i, 7) have
the property S (satisfying (i)), from Theorem [3| we obtain:

Corollary 2. Let n > 1 be a composite number. Then

pip @ (3)} = i v (3)}

Second we shall make an application of Theorem . Putting f; = 2*0™ f, = 7 we have

fi(p) = fa(p) Vp € P

since
20 = 7(p) = 2.

Now, let g = o. In this case it is easy to verify that the pairs (2°(™), o) and (7,0) have the
property S (satisfying (ii)). Therefore, we obtain from Theorem

Corollary 3. Let n > 1 be a composite number. Then

max {200 () } = max {=(@)o () |

In the same manner, putting ¢ = 1 and observing that the pairs (2™ ) and (7,))
have the property S (satisfying (ii)), from Theorem 4| we obtain:

Corollary 4. Let n > 1 be a composite number. Then

max {20y (7) } = max {r(@)v (5) ]

Finally, we make some observations concerning unitary divisors of a number.

Let n € N be arbitrary number. We remind that a divisor d of n is said to be unitary
divisor of n if ged(d, %) = 1. A unitary divisor d of n, such that d # 1,n is said to be proper
unitary divisor of n.
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Let =, be an arbitray set whose elements are unitary divisors of n (not necessarily all)
and having the property

Ifdes, thengeEn

In particular, the set of all unitary divisors of n and the set of all proper unitary divisors of
n are examples of such sets =,. Let f,g € M. From [I, Lemma 1] it is trivial to obtain the
following result.

Proposition 1. Let

ma {19 (3) )
is reached for d = d', then

in { ()9 ()
is reached for 2. If

nin {09 (3)}
is reached for d”, then

ma {19 ()}

n

1s reached for R

For the particular case, g = f we obtain the following result:

Proposition 2. All elements of the set

n —_
{f(d)f <E> . d runs over all elements of un}
are equal and coinciding with f(n). If:
min {f(d)} = An; max{f(d)} = By,

then

Example 1. Let n = 60 and f = o. If =4 is the set of all unitary divisors of 60, we have
A60 = ]_, BGO = 168 and AGOBGO = 1.168 =168 = 0'(60)

If =40 is the set of all proper unitary divisors of 60, we have Agy = 4, Bgg = 42 and
AgoBgo = 4.42 = 168 = 0(60)

It is easy to see that if n > 1 is a composite squarefree number, then all divisors of n are
unitary divisors of n and all proper divisors of n are proper unitary divisors of n. Therefore,
we may choose for =,, each one of the sets: the set of all divisors of n or the set of all proper
divisors of n and Proposition [2| remains valid for such n.

Example 2. Let n = 105 and f = . If 2195 ts the set of all divisors of 105, we have
Avgs = 1, Bios = 48 and A1 Bios = 1.48 = 48 = (105).

If =105 is the set of all proper divisors of 105, we have Ajps = 2, Bios = 24 and Ay95B105 =
2.24 = 48 = p(105).
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