Remark on Jacobsthal numbers. Part 2
 Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling
IBFBME - Bulg. Academy of Sci., Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

The n-th Jacobsthal number $(n \geq 0)$ is defined by

$$
J_{n}=\frac{2^{n}-(-1)^{n}}{3}
$$

(see, e.g., [1]).
The first ten members of the sequence $\left\{J_{n}\right\}$ are

0	1	2	3	4	5	6	7	8	9
0	1	1	3	5	11	21	43	85	171

Now, we generalize these numbers to the form:

$$
J_{n}^{s}=\frac{s^{n}-(-1)^{n}}{s+1}
$$

where $n \geq 0$ is a natural number and $s \geq 0$ is a real number.
Obviously, when $s=2$ we obtain the standard Jacobsthal numbers.
The first five members of the sequence $\left\{J_{n}^{s}\right\}$ with respect to n are

0	1	2	3	4
0	1	$s-1$	$s^{2}-s+1$	$s^{3}-s^{2}+s-1$

In the case $s=0$ we obtain

$$
J_{n}^{0}=-(-1)^{n}=(-1)^{n+1}
$$

In the case $s=1$ we obtain

$$
J_{n}^{1}=\frac{1-(-1)^{n}}{2}
$$

and the first ten members of sequence $\left\{J_{n}^{1}\right\}$ with respect to n are

0	1	2	3	4	5	6	7	8	9
0	1	0	1	0	1	0	1	0	1

In the case $s=3$ we obtain

$$
J_{n}^{1}=\frac{3^{n}-(-1)^{n}}{4}
$$

and the first ten members of sequence $\left\{J_{n}^{3}\right\}$ with respect to n are

0	1	2	3	4	5	6	7	8	9
0	1	2	7	20	61	182	547	1640	4921

Theorem 1. For every natural number $n \geq 0$ and real number $s \geq 0$

$$
J_{n+1}^{s}=s . J_{n}^{s}+(-1)^{n} .
$$

Proof. Directly it can be checked that for each $n \geq 0$:

$$
\begin{aligned}
J_{n+1}^{s} & =\frac{s^{n+1}-(-1)^{n+1}}{s+1} \\
& =\frac{s \cdot s^{n}+(-1)^{n}}{s+1} \\
& =\frac{s \cdot\left(s^{n}-(-1)^{n}\right)+s \cdot(-1)^{n}+(-1)^{n}}{s+1} \\
& =s \cdot J_{n}^{s}+(-1)^{n} .
\end{aligned}
$$

The next step of generalization of the Jacobsthal numbers has the form:

$$
J_{n}^{s, t}=\frac{s^{n}-(-t)^{n}}{s+t}
$$

where $n \geq 0$ is a natural number and $s \neq-t$ are arbitrary real numbers.
It is possible to consider also the case $s=-t$. In this case we define

$$
J_{n}^{-t, t}=\lim _{s \rightarrow-t} \frac{s^{n}-(-t)^{n}}{s+t} .
$$

For the right side of this equality we apply the L'Hopital's rule and obtain

$$
\begin{aligned}
J_{n}^{-t, t} & =\frac{\left.\frac{d}{d s}\left(s^{n}-(-t)^{n}\right)\right|_{s=-t}}{\left.\frac{d}{d s}(s+t)\right|_{s=-t}} \\
& =\frac{\left.n \cdot s^{n-1}\right|_{s=-t}}{\left.1\right|_{s=-t}} \\
& =n \cdot(-t)^{n-1} .
\end{aligned}
$$

Respectilevy,

$$
J_{n}^{s,-s}=n \cdot s^{n-1} .
$$

We can prove, as above
Theorem 2. For every natural number $n \geq 0$ and real numbers s, t

$$
J_{n+1}^{s, t}=s . J_{n}^{s, t}+(-t)^{n} .
$$

Proof. Let $s \neq-t$. Then it can be directly checked that for each $n \geq 0$:

$$
\begin{aligned}
J_{n+1}^{s, t} & =\frac{s^{n+1}-(-t)^{n+1}}{s+t} \\
& =\frac{s \cdot s^{n}+t \cdot(-t)^{n}}{s+t} \\
& =\frac{s \cdot\left(s^{n}-(-t)^{n}\right)+s \cdot(-t)^{n}+t .(-t)^{n}}{s+t} \\
& =s \cdot J_{n}^{s, t}+(-t)^{n} .
\end{aligned}
$$

When $s=-t$, then

$$
J_{n+1}^{s,-s}=(n+1) \cdot s^{n}=n \cdot s^{n-1} \cdot s+s^{n}=s \cdot J_{n}^{s,-s}+(-(-s))^{n} .
$$

The theorem is proved.
Finally, we mention the following equalities.

$$
\begin{gathered}
J_{n}^{0,0}=0, \\
J_{n}^{1,-1}=n, \\
J_{n}^{s, 0}=s^{n-1}, \\
J_{n}^{0, t}=(-t)^{n-1} \\
J_{n}^{s,-1}=s^{n-1}+s^{n-2}+\ldots+1 .
\end{gathered}
$$

The author is very thankfull to his colleague and friend Mladen Vassilev-Missana for the useful discussion.

References

[1] Ribenboim, P. The Theory of Classical Variations, Springer, New York, 1999.

