NNTDM 17 (2011), 2, 40-46

Structure analyses of the perimeters of primitive Pythagorean triples

J.V. Leyendekkers¹ and A.G. Shannon²

¹ The University of Sydney, 2006 Australia

² Faculty of Engineering & IT, University of Technology Sydney, 2007 Australia

Abstract. Structural analysis (via the modular rings Z_4 , Z_6) shows that the Perimeters, Pr, of primitive Pythagorean Triples (pPts) do not belong to simple functions. However, the factors x, (x+y) of the perimeter do, and the number of pPts in a given interval can be estimated from this. When x is prime, the series for (x+y) is complete and the associated pPts are one third of the total. When x is composite, members of the series for (x+y) are invalid when common factors with x occur. These members are not associated with pPts. When 3|(x + y), $Pr \in \overline{3}_6$, while if $3 \nmid (x+y)$, $Pr \in \{\overline{1}_6, \overline{3}_6\}$. Class $\overline{3}_6$ dominates in the distribution.

Keywords: Primitive Pythagorean triples, Modular rings, Primes, Composites

AMS Subject Classification: 11A41, 11A07, 11B39, 11C99

1 Introduction

We have recently analysed the structural characteristics of the major components of primitive Pythagorean triples (pPts), using the modular rings Z_4 , Z_6 (Tables 1 and 2). This permitted an estimate of the number of pPts in a given range and the constraints which prevent the formation of pPts [4].

	f(r)	$4r_{0}$	$4r_1 + 1$	$4r_2 + 2$	$4r_3 + 3$
Row	Class	$\overline{0}_4$	$\overline{1}_4$	$\overline{2}_4$	$\overline{3}_4$
(0	0	1	2	3
-	1	4	5	6	7
	2	8	9	10	11
	3	12	13	14	15
2	4	16	17	18	19
	5	20	21	22	23
(6	24	25	26	27
,	7	28	29	30	31

Table 1: Rows of Z_4

This study also showed the link between the number of primes in $\overline{1}_4$ and the number of pPts in the range. In this paper we consider the perimeter, Pr, of pPts; that is, for

$$c^{2} = a^{2} + b^{2}$$

Pr = $a + b + c$.

This quantity has been used to develop a theoretical estimate of the number of pPts in a given range [1]. In addition, other new characteristics of the major component and (x,y) couples will be illustrated, where :

$$\Pr = 2x(x+y).$$

	f(r)	$6r_1 - 2$	$6r_2 - 1$	$6r_3$	$6r_4 + 1$	$6r_5 + 2$	$6r_6 + 3$
Row							
	Class	Ī6	$\overline{2}_{6}$	$\overline{3}_{6}$	$\overline{4}_{6}$	$\overline{5}_{6}$	$\overline{6}_{6}$
	0	-2	-1	0	1	2	3
	1	4	5	6	7	8	9
	2	10	11	12	13	14	15
	3	16	17	18	19	20	21
	4	22	23	24	25	26	27
	5	28	29	30	31	32	33
	6	34	35	36	37	38	39
	7	40	41	42	43	44	45

Table 2: Rows of Z_6

2. Factors of the Perimeter of a pPt

The major component $c \in \overline{1}_4$, as the integers in this Class in Z_4 may form a sum of squares, whereas integers in $\overline{3}_4$ cannot [2,4]. We have used Z_4 to illustrate that $c \in \overline{1}_4$, and this follows simply since $\overline{3}_4 \overline{2}_4$ have no squares (Table 1) so that $\overline{1}_4 + \overline{0}_4 = \overline{1}_4$ or $x^2 + y^2 = c$.

However, analysis of pPts is best done using Z_6 (Table 2). This ring allows odd integers, N, with 3|N to be isolated in Class $\overline{6}_6$ (Table 2). This is useful as c cannot have a factor of 3. Thus we need only consider the two Classes $\overline{2}_6$, $\overline{4}_6$ (Tables 1-3).

Class	Row in Z_6	Row in Z_4
$\overline{2}_6$	R ₂ odd	r_1 odd or even
$\overline{4}_6$	R ₄ even	3 r ₁

Table 3: Integers from Class $\overline{1}_4 \subset Z_4$ transferred to Z_6

The factor, x, of Pr is even or odd, but (x + y) is odd. When x is constant (x + y) follows a regular sequence (Table 4,5) with

$$x + y_0 = \begin{cases} x + 2, & x \text{ odd}, \\ x + 1, & x \text{ even.} \end{cases}$$

The largest y is (x - 1), since x>y. Only when x is a prime or equal to 2^n is the sequence complete (Tables 4,5).

x	Range of $(x+y_i)$,	Number of ele-	Range of <i>c</i>
	i:0-n	ments of sequence	
3	5	1	13
5	7-9	2	29-41
7	9-13	3	53-85
11	13-21	5	125-221
13	15-25	6	173-313
17	19-33	8	293-685
19	21-37	9	365-685
23	25-45	11	533-1013
29	31-57	14	845,857,877.905.941
		6 (to 1013)	985-1625
31	33-61	15	965,977,997 to
		3 (to (1013)	1861
37	39-73	18	1373-2665
		0 (to 1013)	
	TOTAL:	54 (to 1013)	

Table 4: Characteristics of factors of pPt perimeter, Pr = 2x(x+y), $y_0=2$, $y_n=x-1$

x	Range of (<i>x</i> + <i>y</i> _i), <i>i</i> :0- <i>n</i>	Missing elements of sequence $(x+y_i)$	Number of elements of	Range of <i>c</i>
			sequence	
2	3	-	1	5
4	5-7	-	2	17-25
6	7-11	9	2	37-61
8	9-15	-	4	65-113
9	11-17	15	3	85-145
10	11-19	15	4	101-181
12	13-23	15,21	4	145-265
14	15-27	21	6	197-365
15	17-29	21, 25, 27	4	229-421
16	17-31	-	8	257-481
18	19-35	21, 27, 33	6	325-613
20	21-39	25, 35	8	401-761
21	23-41	27, 33, 35, 39	6	445-841
22	23-43	33	10	485-925
24	25-47	27, 33, 39, 45	8	577, 601, 625, 697, 745, 865,
			7 (to 1013)	937 to 1105

25	27-49	35,45	10	629, 641, 661, 689, 769, 821, 881,
			8 (to 1013)	949 to 1201
26	27-51	39	12	677, 685, 701, 725, 757, 797, 901, 965,
			8 (to 1013)	1037 to 1301
27	29-53	33, 39, 45, 51	8	733, 745, 793, 829, 925, 985,
			6 (to 1013)	1053 to 1405
28	29-55	35, 49	11	785, 793, 809, 865, 905, 953,
			7 (to 1013)	1009 to 1513
30	31-59	33, 35, 39, 45, 51,	7	901, 949, 1021 to 1741
		55, 57		
			2 (to 1013)	
32	33-63	-	16	1024-1985
			0 (to 1013)	
	TOT	ΓAL: 106 (to		

Table 5: Characteristics of factors of pPt perimeter, Pr = 2x(x+y), $y_0=1,(x \text{ even}), y_0=2 (x \text{ odd}), y_n=x-1$

Otherwise, when x and (x+y) have a common factor the (x,y) couple cannot form a pPt. Obviously, when $x = 2^n$ or a prime there cannot be a common factor with (x+y). This means that primes can be distinguished from the odd composites (Tables 4 and 5). The Class of Pr will depend on the classes of x and y (Table 6).

x	у	Pr=2x(x+y)	Examples
$\overline{6}_{6}$	$\overline{1}_6$	$\overline{3}_6$	<i>x</i> =9, <i>y</i> =4;
$(6r_6+3)$	$(6r_1-2)$	$6r_3(r_3 \text{ odd})$	Pr =234=6×39
$\overline{2}_6$	$\overline{1}_6$	$\overline{3}_6$	<i>x</i> =11, <i>y</i> =4;
$(6r_2-1)$	$(6r_1-2)$	$6r_3$ (r ₃ odd)	Pr=330=6×55
$\overline{4}_6$	$\overline{1}_6$	$\overline{1}_6$	<i>x</i> =7, <i>y</i> =4;
$(6r_4+1)$	$(6r_1-2)$	r ₁ even	Pr=154=6×26-2
$\overline{6}_{6}$	$\overline{3}_6$	invalid	since $3 x, 3 y$
$\overline{2}_6$	$\overline{3}_6$	$\overline{5}_6$	<i>x</i> =11, <i>y</i> =6;
		$(6r_5+2) (r_5 \text{ even})$	Pr=374=6×62+2
$\overline{4}_6$	$\overline{3}_6$	$\overline{5}_6$	<i>x</i> =7, <i>y</i> =6;
		$(r_5 \text{ even})$	Pr=182=6×30+2
$\overline{6}_{6}$	$\overline{5}_6$	$\overline{3}_6$	<i>x</i> =3, <i>y</i> =2;
		$(r_3 \text{ odd})$	Pr=30=6×5
$\overline{2}_6$	$\overline{5}_6$	$\overline{1}_6$	<i>x</i> =17, <i>y</i> =14;
		$(r_1 \text{ even})$	Pr=1054=6×176-2
$\overline{4}_6$	$\overline{5}_6$	3,6	<i>x</i> =19, <i>y</i> =8;
		$(r_3 \text{ odd})$	Pr=1026=6×171

Table 6: Class distribution. (When $Pr \in \overline{3}_6$, row always odd; $Pr \in \overline{1}_6, \overline{5}_6$ row always even)

Note that when $\Pr \in \overline{3}_6$, then 3|Pr, and the row is always odd. When $\Pr \{\overline{1}_6, \overline{5}_6\}$, the row is always even. This gives a check on Pr. The reader might like to investigate why integers in these Classes in alternate rows (that is, even rows in $\overline{3}_6$, etc) cannot be Pr values. Use Class function and *a*,*b*,*c* as f(x,y).

Class $\overline{3}_6$ has twice as many Pr values as either $\overline{1}_6$ or $\overline{5}_6$. Thus the Pr commonly has a factor of 3 (Table 7).

The distribution among the three Classes differs for primes and odd composites (Table 8), although Class $\overline{3}_6$ dominates for both, as predicted (Table 6).

c Pr Class	509 1188 3 ₆	521 1240 16	$541 \\ 1302 \\ \bar{3}_{6}$	$557 \\ 1254 \\ \bar{3}_{6}$	$569 \\ 1320 \\ \bar{3}_{6}$	$577 \\ 1200 \\ \bar{3}_{6}$	593 1426 1 6			617 1330 1 ₆	641 1450 Ī ₆	653 1540 1 ₆
c	661	673		701	709	733	757	761	769	773	797	809
Pr	1550	1610		1612	1628	1566	1820	1560	1850	1716	1924	1848
Class	5 ₆	5 ₆		16	5 ₆	3 ₆	5 ₆	3 ₆	5 ₆	3 ₆	1 <u>6</u>	3 ₆
c	821	829	853	857	877 2030 $\overline{5}_6$	881	929	937	941	953	977	997
Pr	1950	1998	1886	1914		2050	1978	2064	2262	2296	2170	2294
Class	3 ₆	3 ₆	5 ₆	3 ₆		1 ₆	16	3 ₆	3 ₆	1 ₆	1 ₆	5 ₆

Table 7: Perimeter values and Classes

Distribution of Pr among the three Classes for even integers in Z ₆						
Classes	$\overline{1}_6$	$\overline{3}_6$	$\overline{5}_6$			
Primes (c)	31%	47%	22%			
Composites (c)	16%	56%	28%			

Table 8: Range of *c*, 500-1000

When the factor x of Pr has 3|x, then c never falls in Class $\overline{2}_6$. If 3|y, then $c \in \overline{4}_6$. These results follow from the structure of Z_6 (Table 2); Classes $\overline{5}_6$ and $\overline{2}_6$ have no even powers.

3 Maximum values of *c* in (x+y) sequences

It is of interest to note that the *c* maximum has a right-end-digit (RED) of 1,3,5. Why is c_{\max}^* not equal to 7 or 9? The asterisk indicates RED. Since

$$(x^2)^* = 1, 5 \text{ or } 9 (x \text{ odd})$$

and

$$(y^2)^* = 0,4$$
 or 6 (y even),

then normally 9, 7 would apply (Table 9). However, y is restricted to (x-1), so that

$$x^2 + y^2 = 2x^2 - 2x + 1.$$

$(y^2)^* \downarrow (x^2)^* \rightarrow$	1	5	9
0	1	5	9
4	5	9	3
6	7	1	5

Table 9: REDs	for	$(x^2)^*$	and	$(y^2)^*$
---------------	-----	-----------	-----	-----------

$(2x^2)^*$	2	8	0	8	2
$-(2x^2)^*$	-2	-6	0	-4	-8
1*	1	1	1	1	1
f(x)	1	3	1	5	5

Table 10: 1,3,5 constraint

4 Number of pPts in a given range

We have recently discussed various ways of predicting the number of pPts in a given range [4]. In the range to 1013 there are 160 pPts (Tables 4,5). When x is a prime the contribution is 54 (Table 4) or one third of the total.

The perimeter does not increase with *c* in a simple manner (Table 7). If $c_2 > c_1$, then $Pr_2 \Rightarrow Pr_1$ necessarily. In fact, $Pr_1 > Pr_2$ regularly (Table 7). Hence, the prediction of the number of pPts in a given interval, *M*, using $M \propto Pr$ [1] cannot, in general, be very accurate. For 0-1000, if 2294 is taken, the result is 160, but the same value would be found for 0-950! When the class and row parity of Pr are considered, simpler functions are possible.

5 Final comments

Odd integers that equal a sum of squares have been known since the time of Fermat to equal $(4r_1+1)$ always; that is, in terms of the modular ring Z_4 these integers always fall in Class $\overline{1}_4$. We have investigated various consequences of this fact, and used modular rings to analyse the underlying structures which permit easier predictions of *x*, *y* [2,3,4].

With *x* constant, (x+y) conforms to a regular sequence with the constraint that members which have common factors for *x* are omitted. This allows *x*, *y* values to be predicted readily for a given range. Prediction of the number of pPts in a given range follows from the *x*, (x+y) characteristics, but the perimeter does not seem to be a suitable quantity for predicting the number of pPts.

References

- [1] Lehmer, D.N. 1900. Asymptotic Evaluation of Certain Totient Sums. *American Journal of Mathematics*. 22: 294-335.
- [2] Leyendekkers, J.V., A.G. Shannon, J.M. Rybak. 2007. *Pattern Recognition: Modular Rings and Integer Structure*. North Sydney: Raffles KvB Monograph No 9.
- [3] Leyendekkers, J.V., A.G. Shannon. 2010. Equations for Primes Obtained from Integer Structure. *Notes on Number Theory & Discrete Mathematics*. 16(3): 1-10.
- [4] Leyendekkers, J.V., A.G. Shannon. 2011. The Number of Primitive Pythagorean Triples in a Given Interval. *Notes on Number Theory & Discrete Mathematics* In press.