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Abstract: We prove an improvement Rosser-Schoenfeld inequalities, more precisely:

xk+1

(k + 1) log x+ 0, 1k2 + 0, 1k − 0, 99
< Ak(x) <

xk+1

(k + 1) log x− 0, 1k2 − 0, 2k − 1, 11
,

where Ak(x) =
∑

p≤x p
k and k ≥ 0.
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1 Introduction
In [5, Th2, page 69] appear the inequalities, which we will call inequalities of Rosser-Schoenfeld
type. These inequalities have been improved in [3, p. 3], namely

π(x) >
x

log x− 1
, if x ≥ 5393, (1)

π(x) <
x

log x− 1.1
, if x ≥ 60184, (2)

We extend the Rosser-Schoenfeld inequality for the function, given by Jean-Pierre Massias
and Guy Robin (see [4]). In our proof, the π(x) function will appear. Throughout this paper, p
denotes a prime number. For each k ≥ 0, we define the functions Ak : (0,∞)→ (0,∞) by

Ak(x) =
∑
p≤x

pk (3)

Observe that A0(x) =
∑
p≤x

1 = π(x).

We evaluate the asymptotic functions Ak(x). For this we turn to some known results and for
the proof of the next propositions (see [2], chap. V, 10, pages 228-232). We recall also a well
known notation, see [2].
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Let g : (a,∞) → R be a function such that g (x) 6= 0, ∀x ∈ (a,∞). If f : (b,∞) → R is a
function, we write f (x) ∼ g (x) if x→∞ or simply f (x) ∼ g (x) if and only if lim

x→∞
f(x)
g(x)

= 1.

Proposition 1. Let a > 0, g : [a,∞) → (0,∞) be a twice differentiable function with the
property that there exists:

lim
x→∞

xg
′
(x)

g(x)
= λ ∈ R̄− {−1}

if λ ∈ (−1,∞) then
∫∞
a
g(x)dx is divergent and∫ ∞

a

g(x)dx ∼ 1

λ+ 1
xg(x), if x→∞.

If:

lim
x→∞

xg
′
(x)

g(x)
= −1,

we define h(x) = xg(x) and ϕ(y) = h(ey). Then∫ x

a

g(t)dt =

∫ log x

log a

ϕ(y)dy.

Proposition 2. Let a > 0, f : [a,∞) → R , g : [a,∞) → (0,∞) be two Riemann integrable
functions for any interval [a, u], ∀a ≤ u <∞.
Suppose

f (x) v g (x) for x→∞

and
∫∞
a
g (t) dt is divergent, then∫ x

a

f (t) dt v
∫ x

a

g (t) dt for x→∞.

To prove the next result (see [5], page 67):
Proposition 3. Let f : (0,∞)→ R be a function which has a continuous derivative. Then∑

p≤x

f(p) = π(x)f(x)−
∫ x

2

π(t)f
′
(t)dt for x ≥ 2.

Taking in this proposition f : (0,∞)→ R f (x) = xk we get
Corollary 1. For each k ≥ 0, we have the following equality

Ak(x) = π(x)xk − k
∫ x

2

π(t)tk−1dt for x ≥ 2.

Next we want a formula for asymptotic evaluation functions Ak(x)

2 Asymptotic evaluations
Lemma 1. For k ≥ 0, we have ∫ x

2

tk

log t
dt ∼ 1

k + 1
· x

k+1

log x
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Proof. We use Proposition 1, in which we take g(x) = xk

log x
. Then g′(x) = kxk−1 log x−xk−1

log2 x
and

lim
x→∞

xg
′
(x)

g(x)
= lim

x→∞

xk(k log x− 1)

log2 x
· log x

xk
= k.

We obtain
∫ x

2
tk

log t
dt ∼ 1

k+1
· xk+1

log x
.

Theorem 1. The following asymptotic evaluation holds: If k ≥ 0 then

Ak(x) ∼ xk+1

(k + 1) log x

Proof. We use the Prime Number Theorem

π(x) ∼ x

log x
⇔ lim

x→∞

π(x) log x

x
= 1.

From Corollary 1 we have

Ak(x) = π(x)xk − k
∫ x

2

π(t)tk−1dt for x ≥ 2.

We multiply this relation with log x
xk+1 and obtain

Ak(x) log x

xk+1
=
π(x) log x

x
− k log x

xk+1

∫ x

2

π(t)tk−1dt.

We wish to prove that the second term limit from the right side is 1
k+1

.
From Prime Number Theorem we have

π(t)tk−1 ∼ t

log t
· tk−1 =

tk

log t

From Proposition 2 we have ∫ x

2

π(t)tk−1dt ∼
∫ x

2

tk

log t
dt

Given Lemma 1,

lim
x→∞

∫ x

2
tk

log x
dt

xk+1

log x

= lim
x→∞

1
k+1
· xk+1

log x

xk+1

log x

=
1

k + 1
,

we obtain that

lim
x→∞

Ak(x) log x

xk+1
=

1

k + 1
if and only if Ak(x) ∼ xk+1

(k + 1) log x
�

3 Bordering for the functions Ak(x)

We want to generalize to Ak(x) Rosser-Schoenfeld inequalities, more precisely:

xk+1

(k + 1)(log x− a)
< Ak(x) <

xk+1

(k + 1)(log x− b)
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where k ≥ 0 and x ≥ 60184.
From Corollary 1 we have

Ak(x) = π(x)xk − k
∫ x

2

π(t)tk−1dt

We use relations (1) and (2), hence

Ak(x) <
xk+1

log x− 1, 1
− k

∫ 5393

2

π(t)tk−1dt− k
∫ x

5393

tkdt

log t− 1

Ak(x) >
xk+1

log x− 1
− k

∫ 60184

2

π(t)tk−1dt− k
∫ x

60184

tkdt

log t− 1, 1
.

For we need to prove the desired inequality

xk+1

log x− 1, 1
− k

∫ 5393

2

π(t)tk−1dt− k
∫ x

5393

tkdt

log t− 1
<

xk+1

(k + 1)(log x− a)

xk+1

log x− 1
− k

∫ 60184

2

π(t)tk−1dt− k
∫ x

60184

tkdt

log t− 1, 1
>

xk+1

(k + 1)(log x− b)
The next sentence will give us the condition for the constants a and b such that the derivative

of the function to be negative, respectively positive. We expect these constants to be dependent
of k, and also, the function depending on k and inequalities will be satisfied from a certain rank
depending on k.
Proposition 4. For k ≥ 0 we consider fa : [5393,∞)→ R,

fa(x) =
xk+1

log x− 1, 1
− k

∫ x

5393

tkdt

log t− 1
− xk+1

(k + 1)(log x− a)

and, gb : [60184,∞)→ R,

gb(x) =
xk+1

log x− 1
− k

∫ x

60184

tkdt

log t− 1, 1
− xk+1

(k + 1)(log x− b)

Then, f ′a(x) < 0 for a > 0,1k2+0,2k+1,1
k+1

and g′b(x) > 0 for b < −0,1k2−0,1k+1
k+1

, ∀x ≥ xk and
k ≥ 0.
Proof.

f
′

a(x) =
xk(k log x+ log x− 1, 1k − 2, 1)

(log x− 1, 1)2
− kxk

log x− 1
− xk(k log x+ log x− ak − a− 1)

(k + 1)(log x− a)2

We want: f ′a(x) < 0, more accurate:

log2 x+ 0, 1k log x− 3, 1 log x+ 2, 1− 0, 11k

log3 x− 3, 2 log2 x+ 3, 41 log x− 1, 21

− k log x+ log x− ak − a− 1

k log2 x+ log2 x− 2ak log x− 2a log x+ ka2 + a2
< 0

⇔ (log2 x+0, 1k log x−3, 1 log x+2, 1−0, 11k)(k log2 x+log2 x−2ak log x−2a log x+ka2+a2)

−(log3 x− 3, 2 log2 x+ 3, 41 log x− 1, 21)(k log x+ log x− ak − a− 1) < 0
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⇔ log3 x(0, 1k2 − ak + 0, 2k − a+ 1, 1)

+ log2 x(−0, 11k2 + a2k − 0, 2ak2 + a2 + 2, 8ak + 3a− 1, 42k − 4, 51)

+ log x(0, 1a2k2 − 3a2k + 0, 22ak2 − 0, 57ak − 3, 1a2 + 1, 21k − 0, 79a+ 4, 62)

−0, 11k2a2 + 1, 99a2k − 1, 21ak + 2, 1a2 − 1, 21a− 1, 21 < 0

We put the condition

0, 1k2 − ak + 0, 2k − a+ 1, 1 < 0⇔ a >
0, 1k2 + 0, 2k + 1, 1

k + 1

For example: a = 0,1k2+0,2k+1,11
k+1

. We obtain

−0, 01 log3 x− 0, 01k4 − 0, 17k3 + 0, 63k2 + 1, 778k − 0, 0521

k + 1
log2 x

+
0, 001k5 − 0, 005k4 − 0, 1108k3 + 0, 4934k2 + 3, 78611k − 0, 07641

k + 1
log x

−−0, 0011k5 + 0, 0166k4 − 0, 06582k3 + 0, 13836k2 − 1, 998231k + 0, 03431

k + 1
< 0

for x ≥ xk.
Logarithmic function and power function is increasing function starting with a certain rank

above relationship is satisfied.

g
′

b(x) =
xk(k log x+ log x− k − 2)

log2 x− 2 log x+ 1
− kxk

log x− 1, 1
− xk(k log x+ log x− kb− b− 1)

(k + 1)(log2 x− 2b log x+ b2)
.

We want g′b(x) > 0, more precisely

log2 x− 0, 1k log x− 3, 1 log x+ 0, 1k + 2, 2

log3 x− 3, 1 log2 x+ 3, 2 log x− 1, 1

− k log x+ log x− kb− b− 1

k log2 x+ log2 x− 2bk log x− 2b log x+ kb2 + b2
> 0

⇔ (log2 x−0, 1k log x−3, 1 log x+0, 1k+2, 2)(k log2 x+log2 x−2bk log x−2b log x+kb2+b2)

−(k log x+ log x− kb− b− 1)(log3 x− 3, 1 log2 x+ 3, 2 log x− 1, 1) > 0

⇔ log3 x(−0, 1k2−bk−b−0, 1k+1)+log2 x(kb2+b2+0, 2bk2+3, 3kb+3, 1b+0, 1k2−0, 9k−4, 1)

+ log x(−0, 1k2b2 − 3, 2kb2 − 0, 2bk2 − 3, 1b2 − 1, 4kb− 1, 2b+ 1, 1k + 4, 3)

+0, 1k2b2 + 2, 3kb2 − 1, 1kb+ 2, 2b2 − 1, 1b− 1, 1 > 0.

We put the condition

−0, 1k2 − bk − b− 0, 1k + 1 > 0⇔ b <
−0, 1k2 − 0, 1k + 1

k + 1
.

For example: b = −0,1k2−0,1k+0,99
k+1

. We obtain:

0, 01 log3 x+
(−0, 01k4 − 0, 23k3 − 1, 43k2 − 2, 241k − 0, 0509) log2 x

k + 1
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+
(−0, 001k5 − 0, 013k4 + 0, 1168k3 + 1, 7646k2 + 4, 64979k + 0, 07369) log x

k + 1

+
0, 001k5 + 0, 024k4 + 0, 1352k3 − 0, 2134k2 − 2, 41659k − 0, 03278

k + 1
> 0

for x ≥ xk.
Similarly to the previous relationship to a certain rank, depending on k, the relationship is

real.
Proposition 5. For a ≥ 2 and ∀c ∈ R we have

lim
x→∞

∫ x

a
tkdt

(log x−c)3

xk+1

log2 x

= 0.

Proof. From Proposition 1 we have g(x) = xk

(log x−c)3

g
′
(x) =

xk−1(k log x− kc− 3)

(log x− c)4

lim
x→∞

xk(k log x− kc− 3)

(log x− c)4
· (log x− c)3

xk
= k.

Then, ∫ x

a

tkdt

(log t− c)3
∼ 1

k + 1
· xk+1

(log x− c)3
.

We have

lim
x→∞

∫ x

a
tkdt

(log x−c)3

xk+1

log2 x

= lim
x→∞

log2 x

(k + 1)(log x− c)3
= 0.�

Proposition 6. For k ≥ 0, we consider f : [5393,∞)→ R,

f(x) =
xk+1

log x− 1, 1
− k

∫ x

5393

tkdt

log t− 1
− xk+1

(k + 1) log x− 0, 1k2 − 0, 2k − 1, 11

and g : [60184,∞)→ R,

g(x) =
xk+1

log x− 1
− k

∫ x

60184

tkdt

log t− 1, 1
− xk+1

(k + 1) log x+ 0, 1k2 + 0, 1k − 0, 99
.

Then limx→∞ f(x) = −∞ and limx→∞ g(x) =∞.
Proof. ∫ x

5393

tkdt

log t− 1
=

tk+1

(k + 1)(log t− 1)
|x5393 +

1

k + 1

∫ x

5393

tkdt

(log t− 1)2

=
xk+1

(k + 1)(log x− 1)
− 5393k+1

(k + 1)(log 5393− 1)

+
tk+1

(k + 1)2(log t− 1)2
|x5393 +

2

(k + 1)2

∫ x

5393

tkdt

(log t− 1)3

=
xk+1

(k + 1)(log x− 1)
− 5393k+1

(k + 1)(log 5393− 1)
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+
xk+1

(k + 1)2(log x− 1)2
− 5393k+1

(k + 1)2(log 5393− 1)2

+
2

(k + 1)2

∫ x

5393

tkdt

(log t− 1)3
.

We note that

A =
5393k+1

(k + 1)(log 5393− 1)
+

5393k+1

(k + 1)2(log 5393− 1)2
.

Then

lim
x→∞

[
xk+1

log x− 1, 1
− kxk+1

(k + 1)(log x− 1)
+ kA

− kxk+1

(k + 1)2(log x− 1)2
− xk+1

(k + 1) log x− 0, 1k2 − 0, 2k − 1, 11

− 2k

(k + 1)2

∫ x

5393

tkdt

(log t− 1)3
]

= lim
x→∞
{[ (−0, 01k − 0, 01) log2 x

(k log2 x+ log2 x− 0, 1k2 log x− 1, 3k log x− 2, 21 log x+ 0, 11k2 + 0, 22k + 1, 221)

+
(−0, 01k4 + 0, 17k3 − 0, 631k2 + 0, 219k + 0, 02) log x

(k log2 x+ log2 x− 0, 1k2 log x− 1, 3k log x− 2, 21 log x+ 0, 11k2 + 0, 22k + 1, 221)

+
0, 01k4 − 0, 18k3 + 0, 711k2 − 0, 22k − 0, 01

(k log2 x+ log2 x− 0, 1k2 log x− 1, 3k log x− 2, 21 log x+ 0, 11k2 + 0, 22k + 1, 221)
]·

xk+1

(k2 log2 x+ 2k log2 x+ log2 x− 2k2 log x− 4k log x− 2 log x+ k2 + 2k + 1)
+ kA

− 2k

(k + 1)2

∫ x

5393

tkdt

(log3 t− 1)3
}.

Considering Proposition 5, we have

lim
x→∞

xk+1

log2 x
· [ −0, 01k − 0, 01

(k + 1)(k2 + 2k + 1)
+
kA log2 x

xk+1

− 2k

(k + 1)2
·

∫ x

5393
tkdt

(log3 t−1)3

xk+1

log2 x

] = −∞

∫ x

60184

tkdt

log t− 1, 1
=

tk+1

(k + 1)(log t− 1, 1)
|x60184 +

1

k + 1

∫ x

60184

tkdt

(log t− 1, 1)2

=
xk+1

(k + 1)(log x− 1, 1)
− 60184k+1

(k + 1)(log 60184− 1, 1)

+
tk+1

(k + 1)2(log t− 1, 1)2
|x60184 +

2

(k + 1)2

∫ x

60184

tkdt

(log t− 1, 1)3

=
xk+1

(k + 1)(log x− 1, 1)
− 60184k+1

(k + 1)(log 60184− 1, 1)
+

xk+1

(k + 1)2(log x− 1, 1)2
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− 60184k+1

(k + 1)2(log 60184− 1, 1)2
+

2

(k + 1)2

∫ x

60184

tkdt

(log t− 1, 1)3
.

We note that

B =
60184k+1

(k + 1)(log 60184− 1, 1)
+

60184k+1

(k + 1)2(log 60184− 1, 1)2

lim
x→∞

g(x) = lim
x→∞

[
xk+1

log x− 1
− xk+1

(k + 1) log x+ 0, 1k2 + 0, 1k − 0, 99

− kxk+1

(k + 1)(log x− 1, 1)
− kxk+1

(k + 1)2(log x− 1, 1)2
− 2k

(k + 1)2

∫ x

60184

tkdt

(log t− 1, 1)3
+Bk]

lim
x→∞
{[ (0, 01k + 0, 01) log2 x

k log2 x+ log2 x+ 0, 1k2 log x− 0, 9k log x− 1, 99 log x− 0, 1k2 − 0, 1k + 0, 99

+
(−0, 11k4 − 1, 319k3 − 3, 609k2 − 1, 332k − 0, 022) log x

k log2 x+ log2 x+ 0, 1k2 log x− 0, 9k log x− 1, 99 log x− 0, 1k2 − 0, 1k + 0, 99

+
−0, 0979k4 − 0, 0837k3 + 1, 11651k2 + 0, 11352k + 0, 00121

k log2 x+ log2 x+ 0, 1k2 log x− 0, 9k log x− 1, 99 log x− 0, 1k2 − 0, 1k + 0, 99
]

· xk+1

k2 log2 x+ 2k log2 x+ log2 x− 2, 2k2 log x− 4, 4k log x− 2, 2 log x+ 0, 121k2 + 0, 242k + 0, 121

+kB − 2

(k + 1)2

∫ x

60184

tkdt

(log t− 1, 1)3
]}.

Considering Proposition 5, we have

lim
x→∞

xk+1

log2 x
[

0, 01k + 0, 01

(k + 1)(k2 + 2k + 1)
+
kB log2 x

xk+1

−
2

(k+1)2

∫ x

60184
tkdt

(log t−1,1)3

xk+1

log2 x

] =∞.�

Using Propositions 4 and 6 we obtain:
Theorem 2. For x big enough and k ≥ 0 we have the following relation

xk+1

(k + 1) log x+ 0, 1k2 + 0, 1k − 0, 99
< Ak(x) <

xk+1

(k + 1) log x− 0, 1k2 − 0, 2k − 1, 11
.
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