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Abstract: We prove an improvement Rosser-Schoenfeld inequalities, more precisely:
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1 Introduction

In [5, Th2, page 69] appear the inequalities, which we will call inequalities of Rosser-Schoenfeld
type. These inequalities have been improved in [3, p. 3], namely
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We extend the Rosser-Schoenfeld inequality for the function, given by Jean-Pierre Massias
and Guy Robin (see [4]). In our proof, the 7(z) function will appear. Throughout this paper, p
denotes a prime number. For each k£ > 0, we define the functions A, : (0,00) — (0, c0) by

Ap(z) =) p* 3)

p<z

Observe that Ag(z) = > 1 = 7(x).
p<x
We evaluate the asymptotic functions A (). For this we turn to some known results and for
the proof of the next propositions (see [2], chap. V, 10, pages 228-232). We recall also a well
known notation, see [2].



Let g : (a,00) — R be a function such that g (z) # 0, Vx € (a,00). If f : (b,00) — Risa
function, we write f (z) ~ g (z) if x — oo or simply f (z) ~ g (z) if and only if lim % = 1.
T—r 00
Proposition 1. Let a > 0,9 : [a,00) — (0,00) be a twice differentiable function with the

property that there exists:

ag(x) o
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if A € (—1,00) then [ g(x)dx is divergent and

/ag(x)dxw/\_l_lxg(x), if x— oc.

If:

fim 290 _
we define h(x) = zg(x) and p(y) = h(e?). Then

T log z
/ g(t)dt = / e(y)dy.
a loga

Proposition 2. Leta > 0, f : [a,00) = R, g : [a,00) — (0,00) be two Riemann integrable
functions for any interval [a, u], Va < u < oo.
Suppose

f(z) «wg(z) forx — oo

and [ g (t) dt is divergent, then
/ f(t)dtm/ g (t) dt for x — oo.

To prove the next result (see [5], page 67):
Proposition 3. Let f : (0, 00) — R be a function which has a continuous derivative. Then

S ) = w(o)fle) = [ w1 @it fors > 2.

p<z

Taking in this proposition f : (0,00) — R f (z) = 2* we get
Corollary 1. For each £ > 0, we have the following equality

Au(@) = m(@)e* — k / Tt for z > 2.
2
Next we want a formula for asymptotic evaluation functions Ay ()

2 Asymptotic evaluations

Lemma 1. For £ > 0, we have
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Proof. We use Proposition 1, in which we take g(z) = logx Then ¢ (z) =
and ) .
k1 —-1) 1
lim ¢ (z) — lim 2 ( ng ) R
T—00 g(x) T—00 log” x xk
We obtain [ it logt k+r1 . f;;
Theorem 1. The following asymptotic evaluation holds: If £ > 0 then
!
A ~—
() (k+1)logz
Proof. We use the Prime Number Theorem
1
m(z) ~ < lim m(2)logz =1
logr  x—o x

From Corollary 1 we have

Ap(x) = m(2)a" — k/ m(t)t*tdt forx > 2.
2

We multiply this relation with ‘,’Eﬁ and obtain

Ag(z)logx  nw(z)logz  klogz /’” ()L,

rk+1 T rk+1

We wish to prove that the second term limit from the right side is

k+1
From Prime Number Theorem we have
t tF
Tttt ~ — T = —
logt logt
From Proposition 2 we have
/ ()" tdt ~ /
2 log
Given Lemma 1,
Ttk 1 Zht+1
2 oga® i BT logr 1
T—00 zhtl T—00 zk+l k =+ ].7
log x logz
we obtain that
. Ag(x)logx 1. , gkt
zh_}rgo P A if and only if Ay (z) ~

3 Bordering for the functions A;(x)

log?

—
(k+1)logz

We want to generalize to Ay (x) Rosser-Schoenfeld inequalities, more precisely:
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where & > 0 and x > 60184.
From Corollary 1 we have

We use relations (1) and (2), hence

k+1 5393 T tkdt
Aplz) < —— / m(t)tLdt — k / .

k41 60184 x & dt
Ag(z) > S k/ m(t)tFtdt — k:/ _
logz —1 2 co184 logt — 1,1
For we need to prove the desired inequality
k+1 5393 T tkdt k+1
L k/ r()tEdt — k/ < -
logz — 1,1 5 5303 logt —1 (k4 1)(logz —a)
k+1 60184 x k1t k+1
v k:/ r(t)ttdt — k/ > ’
logx — 1 9 co1sa logt — 1,1~ (k4 1)(logx —b)

The next sentence will give us the condition for the constants a and b such that the derivative
of the function to be negative, respectively positive. We expect these constants to be dependent
of k, and also, the function depending on k£ and inequalities will be satisfied from a certain rank
depending on k.

Proposition 4. For k£ > 0 we consider f, : [5393,00) — R,

:L,k+1 T tkdt $k+1
fle) = oy =k [ -
logz — 1,1 5303 logt — 1 (k+1)(logx — a)
and, g, : [60184,00) — R,
s} x o Lk
N :
logx — 1 corsa logt — 1,1 (k+ 1)(logz —b)
Then, f,(z) < 0 for a > %ﬁk“’l and g,(r) > 0 for b < w, Vo > x) and
k> 0.
Proof.
£ () 2 (klogz +logz — 1,1k — 2,1) ka* rf(klogz +logx — ak —a — 1)
x) = - -
“ (logz —1,1)? logx — 1 (k+1)(logx — a)?
We want: f,(x) < 0, more accurate:
logz +0,1klogz — 3,1logz + 2,1 — 0,11k
log®z — 3,2log*z + 3,41 logx — 1,21
k1 1 —ak—a—1
ogxr +logx —a a <0

_krlogz:thrlong — 2aklogx — 2alog x + ka? + a?
& (log? z+0, 1klog —3, 1log 2+2,1-0, 11%) (k log® x-+log? 2 —2ak log £ —2a log x+ka®+a*)
—(log®z — 3,2log” x + 3,41 logz — 1,21)(klogz 4+ logz —ak —a —1) <0
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& log® (0, 1k* —ak + 0,2k —a +1,1)
+log? 2(—0,11k* + @’k — 0,2ak® + a* + 2, 8ak + 3a — 1,42k — 4,51)
+log z(0, 1a*k* — 3a®k + 0,22ak?® — 0,57ak — 3, 1a® + 1,21k — 0,79a + 4, 62)
—0,11k%* + 1,99a¢*k — 1,21ak +2,1a®> — 1,2la — 1,21 < 0
We put the condition

0,1k2 40,2k + 1,1
k41

0,1k* —ak+0,2k—a+1,1<0<a >

2 .
For example: a = “H+22HLL We obtain

0,01k* — 0,17k 4+ 0,63k* + 1, 778k — 0, 0521
E+1

+O, 001%° — 0,005k* — 0, 1108%> + 0,4934k? + 3, 78611k — 0, 07641
E+1
—0,0011%° + 0, 0166k* — 0,06582k3 + 0, 13836k — 1,998231k + 0, 03431 -
E+1

—0,011og®z — log®

log x

0

for z > x;.
Logarithmic function and power function is increasing function starting with a certain rank
above relationship is satisfied.

/(I)_xk(klongtlogx—k—Q)_ ka*  aF(klogz +logz — kb —b—1)
I = T 02w — 2loga + 1 logz — 1,1 (k+ 1)(log>x — 2blogx + 0?)

We want g, () > 0, more precisely

log?z — 0,1klogz — 3,1logz + 0, 1k + 2,2
log®x — 3,1log>x + 3,2logz — 1,1

klogz +logz —kb—b—1
T hloglz + log’ 7 — 2bklogx — 2blogz + kb2 + 02 0
& (log? 2—0, 1klog x—3, 11log x40, 1k+2,2)(k log® x +log? x — 2bk log z — 2blog x + kb* +b?)
—(klogx +logx — kb —b—1)(log®z — 3,1log*z + 3,2logz — 1,1) > 0
& log® x(—0, 1k* —bk—b—0, 1k+1)+log® (kb 4-b*+0, 20k*+3, 3kb+-3, 1640, 1k*—0, 9k—4, 1)
+log x(—0, 1k%?* — 3,2kb? — 0,20k* — 3,10* — 1,4kb — 1,20+ 1, 1k + 4, 3)
+0, 1k%0* +2,3kb* — 1,1kb+2,26* —1,1b— 1,1 > 0.

We put the condition

—0,1k% — 0,1k + 1

0,1k —bk—b—0,1k+1>0&b<
k+ 1

_ 2_ .
For example: b = W. We obtain:

(—0,01k* — 0,23k — 1,43k* — 2,241k — 0,0509) log? z
k+1

0,01log® z +



+(—O, 001k° — 0,013k* + 0, 1168k> + 1, 7646k* + 4, 64979k + 0,07369) log
kE+1
+0, 001k5 + 0, 024k* + 0, 1352k3 — 0, 2134k* — 2,41659k — 0, 03278 -
E+1

for z > x;.

Similarly to the previous relationship to a certain rank, depending on k, the relationship is
real.

Proposition 5. For a > 2 and Vc € R we have

fw thdt

. a (logz—c)3
N e
T—00 T

log?

Proof. From Proposition 1 we have g(z) = ﬁ

/ 2 Y klogx — ke — 3
g (x) = (log :

(logx — c¢)*
k . o _ 3
lim & (klogz — ke —3) (logz —c) _
—00 (10g[1§' — 6)4 f[)k
Then,
/.’E tkdt 1 xk+1
. (logt—c)® k41 (logx—c)3
We have .
fx (lt% log® x
1; a (logz—c) — i "
200 i 2500 (k + 1)(logz — ¢)?

Proposition 6. For & > 0, we consider f : [5393,00) — R,

xk‘-i—l T tkdt .Tk:+1
o]
logz — 1,1 5

a93 logt —1  (k+1)logx —0,1k% — 0,2k — 1,11

and g : [60184,00) — R,

I.k:-i-l T tkdt xk-‘rl
o= 2
logzx — 1 6

nsalogt —1,1  (k+1)logx +0,1k2 + 0,1k — 0,99

—oo and lim, . g(z) = 0.

Then lim, ., f(z) =
Proof.

v thdt thtt . 1 v thdt
] 1 ] — 5303 + 7 (oot —1)2
5303 logt —1  (k+1)(logt — 1) kE+1 Js305 (logt —1)
:L,kJrl 5393k+1

(k+1)(logz —1)  (k+1)(log5393 — 1)
thtl - 2 /x thdt
k4 1)2(logt — 1)2'59 (k4 1)2? Jsz05 (logt —1)3
xk—i—l 5393k+1

(k+1)(logz —1) (k+ 1)(log5393 — 1)

T




N $k+1 5393k+1
(k+1)2(logz —1)2 (k+ 1)2(log 5393 — 1)2

+

/m thdt
(k+1)% Js303 (logt —1)3
‘We note that

B 5393k+1 N 53931
~ (k+1)(1og5393 —1)  (k+1)2(log 5393 — 1)2°
Then k+1 k k+1
x X
li - kA
xl—>rrolo[logx— L1 (k+1)(logx —1) i
k‘xkﬂ I’k+1
(k4 1)2(logz —1)2  (k+1)logz —0,1k% — 0,2k — 1,11
2% /f” thdt ]
(k+1)2 Jss93 (logt —1)?
—0,01k — 0,01) log®
~ lim {| (—=0,01k — 0,01) log” x

z—oc (klog? x 4+ log® x — 0,1k2logx — 1,3k logx — 2,211logx + 0, 11k2 4 0,22k + 1,221)
. (—0,01k* +0,17k3 — 0,631k% + 0,219k + 0,02) log =
(klog*z 4+ log®x — 0,1k2logz — 1,3klogx — 2,21 logx + 0, 11k2 + 0,22k + 1,221)
0,01k* —0,18%* + 0, 711k* — 0,22k — 0,01 !

(klog z+log*x —0,1k2logz — 1,3klogz — 2,21 1logx + 0, 11k2 + 0,22k + 1, 221)
k+1

x
(k2log® x + 2klog® x + log> x — 2k2log x — 4klogx — 2logx + k2 + 2k + 1)

2k /fc thdt !
(kf + 1)2 5393 (loggt — 1)3 '

Considering Proposition 5, we have

+ kA

. s —0,01k — 0,01 N kAlog? x
z—oc log? x k1) (K2 + 2k + 1) s

_thkat
2k f5393 (log¥t—1)3
(k+1)2 ahtl

log?

|=—-c

/f thdt thtl PR 1 /f thdt
60184 logt — 1,1 (k' +1)(logt —1,1) O k41 6o1s4 (logt —1,1)2
xk-&-l 60184k+1
" (k+D(logz —1,1)  (k+1)(log60184 — 1,1)

N th+t T 2 /I thdt
(k+1)2(logt — 1,1)2% (K +1)? Jeoiss (logt —1,1)3
k1 60184k+1 k1
- (k+1)(logz —1,1)  (k+1)(log60184 — 1,1) i (k+1)2(logx —1,1)2




60184~+1 L 2 /“’ thdt

We note that

60184++1 60184+1
T F+ )(log 60184 — 1, 1) | (k+ 1)2(log 60184 — 1, 1)2
s Rt
Jim g(z) = xlilﬁlo[logx —1 (k+1)logz +0,1k2+0,1k — 0,99
kak+l kakt! 2k v thdt
B (k+1)(logxz —1,1) B (k+1)*(logx — 1,1)? (k+ 1)2 /60184 (logt —1,1)3 + Bi|

lim {| (0,01k 4 0,01) log® =
z—oo klog?x + log?z + 0, 1k2logz — 0,9k logz — 1,991logz — 0,1k2 — 0,1k + 0,99
n (—0,11k* — 1,319%% — 3,609k* — 1,332k — 0,022) log x
klog*z +log?z + 0,1k2logz — 0,9k logz — 1,991og z — 0, 1k2 — 0, 1k + 0, 99
N —0,0979k* — 0,0837k + 1,11651k> + 0, 11352k + 0,00121
klog? z +log?z + 0,1k2logx — 0,9k logx — 1,991logz — 0, 1k2 — 0, 1k + 0,99
k+1

]

x
k2log?x + 2k log? x + log®x — 2, 2k2log & — 4, 4k log x — 2,2log = + 0, 121k + 0, 242k + 0, 121

2 @ thdt
kB — — S Y
(k+1) /60184 (logt —1, 1)3]}

Considering Proposition 5, we have

gkt 0,01k + 0,01 kBlog®

y
o T DT kD) T o

2 fﬂﬂ thdt
(k+1)2 J60184 (logt—1,1)3
- SN ]
log? x

=o0.l

Using Propositions 4 and 6 we obtain:
Theorem 2. For x big enough and £ > 0 we have the following relation

xk+1 l.kJrl

A .
i Dlogz 1012 1015k —0.99 = *@) < G gz 0.1 0.2k —L.11
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