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The paper is a continuation of [1, 2]. For the well-known functions ¢, ¢ and o (see, e.g. [3]),
here we prove the following
Theorem. For each natural number n > 1
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Proof. From the obvious inequality ¢)(n) < o(n) for each natural number n > 2, it follows
directly, that
()7 (n) "™ < p(n)? Vo (n)7™. (2)

Therefore, we must prove only the first inequality of (1).
Let n = p be a prime number. Then, we check directly, that
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For the proof below, we need the following
Lemma. For each natural number n > 2

p(n) +¢(n) = 2n.

Proof. Let n be a prime number. Then, the assertion is obvious. Let the assertion be valid for
some natural number n and let p be a prime number. If p & set(n), then

@(np)+(np)—2np = o(p)(p—1)+(n)(p+1)—2np = p(p(n)+(n)—2n)+(n)—p(n) > 0
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by induction assumption. If p € set(n), then

@(np) +Y(np) — 2np = o(p)p + (n)p — 2np = p(p(n) + ¥(n) — 2n) > 0

by induction assumption. Now, we return to the proof of the Theorem.
Let us assume that
n*" < p(n)? Wy (n)* (3)

for some natural number n > 2. Let p be a prime number. For it, there two cases.
Case 1: p & set(n). Then,
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(by induction assumption)
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(by the Lemma)
>n”"((p— P (p+ 1)) — (p*)") > 0.

Case 2: p € set(n). Then
X = p(np)?"P(np) P — (np)*P

= ((n)p)?"™P (Y (n)p)*™P — (np)*"
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by the induction assumption and Lemma.
So, (3) is proved. From the validity of (2) and (3), the validity of (1) follows directly.
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