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1 Introduction
Consider the equation

yn = f(x)n + g(x) (1)

where n is a positive integer, f(x) and g(x) are non-zero rational polynomials, f(x) has a positive
leading coefficient and deg(g(x)) < (n − 1)deg(f(x)). In 1887, Runge [3] proved: Let f(x) be
a polynomial of degree n with integral coefficients and let m be a positive integer. If f(x) − ym
is irreducible over the rational field Q, gcd(n,m) > 1 and Runge’s condition is satisfied (for
Runge’s condition, see [3]), then all integral solutions (x, y) of the equation ym = f(x) satisfy

|x| ≤ d2n−d
(n
d
+ 2
)d

(h+ 1)n+d,

where d is a divisor of gcd(m,n), h = max{H(f(x)), 1} and H(f(x)) is the height of f(x). In
1969, Baker [1] found an upper bound for all integral solutions (x, y) of the equation y2 = f(x)
in which f(x) is a separable polynomial of degree n ≥ 5 with integer coefficients. In 1999,
Poulakis [2] described a method to solve equation 1, when the discriminant of the righthand of
equation 1 is non-zero, deg(f(x)) = n = 2 and g(x) 6= 0. In 2000, Szalay [4] generalized the
algorithm of Poulakis [2], when g(x) is non-zero, n is even and the lefthand of equation 1 is
monic. In 2002, Szalay [5] generalized the algorithm of Szalay [4].

Our aim in this paper is to present a simplest algorithm better than the algorithm of Szalay [5].
We plan this paper as follows. In section 2, we study the algorithm with examples. In section 3,
we give a proof for correctness of the algorithm. Throughout of this paper, we use the following
notations. N, Z, Z− and R are natural, integer, negative integer and real sets, respectively, and
max A is the maximum number of the real subset A.

2 The Algorithm
In this algorithm, we consider equation (1) with a restriction that f(x), g(x) > 0 for any positive
integer x and we find an upper bound for all solutions (x, y) ∈ N× Z.
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Step 1. Find the least positive integer δ such that δf(x) and δng(x) have integer coefficients.

Case 1. g(x) has a positive leading coefficient.

Step 2. Set

p(x) =
n∑

i=1

(
n

i

)
(δf(x))n−i − (δng(x)).

and
U = {x ∈ R : x > 0 and p(x) = 0}.

Step 3. If U is empty, then the given equation has no solution (x, y) ∈ N× Z .

Step 4. All solutions (x, y) ∈ N× Z of the equation 1 satisfy

x ≤ max U.

Case 2. g(x) has a negative leading coefficient.

Step 2. Set

q(x) =
n∑

i=1

(−1)i−1
(
n

i

)
(δf(x))n−i + (δng(x)).

and
V = {x ∈ R : x > 0 and q(x) = 0}.

Step 3. If V is empty, then the given equation has no solutions (x, y) ∈ N× Z.

Step 4. Each positive integral solution (x, y) of the equation 1 satisfies

x ≤ max V.

Note.
(i) Consider equation (1). Replace x by x′ + α in equation (1) where α is the least non-

negative integer such that f(x′ + α), g(x′ + α) > 0 for each positive integer x′. Now, we can
use the above algorithm to find an upper bound for all solutions (x′, y) ∈ N × Z of the equation
yn = f(x′ + α)n + g(x′ + α). From this, we can calculate the upper bound for all solutions
(x, y) ∈ N× Z, because x = x′ + α.

(ii) Also, we can use the same algorithm for finding a lower bound for x of all solutions
(x, y) ∈ Z− × Z by replacing of x by −x in equation (1).

Example 1. y3 = x6 + 3x5 + 6x4 + 7x3 + 6x2 + 4x+ 1,
f(x) = x2 + x+ 1, g(x) = x, δ = 1 and n = 3.
So p(x) = 3x4 + 6x3 + 12x2 + 8x+ 7.
Therefore, U = φ. Hence, the given equation has no solutions (x, y) ∈ N×Z. Also, all solutions
(x, y) ∈ Z− × Z satisfy −1 ≤ x. It is clear that (−1, 0) is the only one solution of the given
equation.

In the following example, we have taken the same of Example 2 of Szalay [4].
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Example 2. y2 = x4 − 2x3 + 2x2 + 7x+ 3,
f(x) = x2 − x+ 1

2
, g(x) = 8x+ 11

4
, δ = 2 and n = 2.

So p(x) = 4x2 − 36x− 8 and

max U =
9 +
√
90

2
.

Hence, by the above algorithm, all positive integral solutions (x, y) of the given equation satisfy
x ≤ 9. Also, all solutions (x, y) ∈ Z− × Z satisfy −7 ≤ x.

3 Proof of Trueness of the Algorithm
Case 1. g(x) has a positive leading coefficient.

Claim 1. If p(u) > 0 for any positive integer u, then there does not exist any integer v such that
(u, v) is a solution of equation (1).

Suppose there is an integral solution (x, y) for equation 1, such that x > 0 and p(x) > 0.
Since p(x) > 0,

n∑
i=1

(
n

i

)
(δf(x))n−i > (δng(x)).

Add (δf(x))n on both sides, then we get

(δf(x))n +
n∑

i=1

(
n

i

)
(δf(x))n−i > (δf(x))n + δng(x).

This implies that
(δf(x) + 1)n > (δf(x))n + δng(x) > (δf(x))n,

since x > 0. Therefore,
(δf(x) + 1)n > (δy)n > (δf(x))n.

This means that there is an integer between consecutive two integers. This is a contradiction. This
proves Claim 1.

If U is empty, then the polynomial p(x) has no real root x > 0. This means that p(x) does not
cross the x-axis in the positive side. Since the leading coefficient of p(x) is positive, p(x) > 0 for
each real number x > 0. Therefore, by Claim 1, we get the result.

Consider the case U is non-empty. Suppose there is a solution (x, y) = (u, v) ∈ N × Z
for equation (1), such that u > max U . Then, p(u) > 0, since the leading coefficient of p(x) is
positive. So, by Claim 1, we get the contradiction. Hence, the above two subcases prove this case.

Case 2. g(x) has a negative leading coefficient. This case follows the same methodology of Case
1.

From Case 1 and Case 2, we get the rightness of the algorithm.
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