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1 Introduction
Analytic number theory is the branch of number theory which uses real and complex analysis to
investigate various properties of arithmetic functions and prime numbers [1]. There is a variety
of truly interesting arithmetic functions such as Euler’s totient function, Möbius function, divisor
function, etc.

Möbius function is a simple multiplicative function that arises in many different places in
number theory. It plays an important role in the study of divisibility properties of integers. The
classical Möbius function [1, 4, 5] is defined by

µ(n) = 1, If n = 1
= (−1)k, If n is square free with k distinct primes
= 0, Otherwise

(1.1)

Some of its fundamental properties are a remarkably simple formula for the divisor sum
∑

d|n µ(d),
extended over the positive divisors of n, and Möbius inversion formula [1, 4, 5]. There are many
generalizations of the Möbius function, as well as analogous functions described by different au-
thors in number theory. The survey of many generalizations of Möbius function in Group theory,
Lattice theory, Partially ordered sets, etc., are found in [7].

Infinite products play an important role in many branches of mathematics. In fact, they pro-
vide an elegant way of encoding and manipulating combinatorial identities. The product expan-
sion of generating function of partition function is a familiar example [2, 3]. In this paper, we
introduce an arithmetic function and study some of its properties analogous to Möbius function.
Further more, we incorporate this new function applying it to infinite products, partition of an
integer and expressions connecting with divisor functions in analytic number theory.
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2 The new arithmetic function and its properties
Let us begin by defining the new arithmetic function on positive integers.

Definition 2.1. For any two positive integers n and p, define an arithmetic function υp(n) as
follow as

υp(n) =



1, If n = 1
2r−1, If n = pr, r ∈ N , p > 1

(−1)k, If either p - n or p = 1 and n is
square-free with k distinct primes

(−1)k2r−1, If n = prm, r ∈ N , p - m and m is
square-free with k distinct primes

0, Otherwise

(2.1)

Remark 2.2. The following results are immediately derived from the definition of υp(n) and
Möbius function,

1. If p - n and n is square free, then υp(n) = µ(n).

2. If n = prm, p - m and m is square free, then υp(n) = 2r−1µ(m).

3. In particular υ1(n) = µ(n), n ∈ N .

Theorem 2.3. If p is any prime or p = 1, then υp is multiplicative.

Proof. It is clearly true when p = 1. Assume that p is any prime. Suppose that m and n are any
two square-free integers with (m,n) = 1 and p - mn, then by Remark 2.2 υp(mn) = µ(mn).
Since µ is multiplicative, υp is also multiplicative. In case (pr, n) = 1 and n is square free
with k distinct primes, then by (2.1) υp(prn) = 2r−1(−1)k = υp(p

r)υp(n). If (prm,n) = 1,
p - mn and m,n are square free with k1, k2 distinct primes, then υp(prmn) = 2r−1(−1)k1+k2 =
υp(p

rm)υp(n). It is also true for other cases. Hence, υp is multiplicative.

Definition 2.4. For any two positive integers n and p, define

δp(n) =

{
−1, If p|n and p > 1
1, If either p - n or p = 1

(2.2)

The following theorem gives an interesting property of υp(n) analogous to Möbius function.

Theorem 2.5. If p is any prime or p = 1 and n ∈ N , then

∑
d|n δp(n/d)υp(d) =

{
1, if n = 1
0, if n > 1

(2.3)

Proof. The formula is true if n = 1 or p = 1, assume that n > 1 and p is any prime. If p - n and
n is square free, then n = p1p2 . . . pk (p1, p2, . . . , pk are distinct primes different from p). Since
p - n, then δp(n/d) = 1 and using Remark 2.2, we find that∑

d|n

δp(n/d)υp(d) =
∑

d|p1p2...pk

υp(d) =
∑

d|p1p2...pk

µ(d) = 0
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If n = pk, then by Definition 2.4, we find that δp(pi) = −1, δp(1) = 1 and using Definition 2.1,
we obtain

∑
d|pk

δp(p
k/d)υp(d) = −1−

k−1∑
i=1

υp(p
i) + υp(p

k) = −1−
k−1∑
i=1

2i−1 + 2k−1 = 0

If n = pkm, where m is square free integer and p - m. Let d runs through divisors of pkm. The
summation can be splitted as follows

∑
d|pkm

δp(p
km/d)υp(d) =

k−1∑
w=0

∑
d|m

δp(p
k−wm/d)υp(p

wd) +
∑
d|m

δp(m/d)υp(p
kd)

Since p - m and using (2.1) and (2.4), we find that

= −
∑
d|m

µ(d)−
k−1∑
w=1

2w−1
∑
d|m

µ(d) + 2k−1
∑
d|m

µ(d) = 0

Further
∑

d|n δp(n/d)υp(d) = 0, for other values of n.

Theorem 2.6. For any prime p or p = 1, δp and υp are Dirichlet inverse to each other, i.e.
δ−1p = υp and υ−1p = δp.

Proof. If I denotes identity function for all values of n, then using Theorem 2.5 we find that

I(n) =
∑
d|n

δp(n/d)υp(d) (2.4)

In the notation of Dirichlet multiplication [1, 5], this becomes

I = δp ∗ υp (2.5)

Hence, δp and υp are Dirichlet inverse to each other.

The above property of δp and υp, along with the associative property of Dirichlet multiplica-
tion, enables us to give a simple proof of the next theorem.

Theorem 2.7. Suppose that f(n) =
∑

d|n δp(n/d)g(d) if and only if g(n) =
∑

d|n υp(d)f(n/d)
for prime p or p = 1.

Proof. Assume that f(n) =
∑

d|n δp(n/d)g(d) is true. So that f = g ∗ δp. Multiplying by υp on
both sides gives

f ∗ υp = (g ∗ δp) ∗ υp = g ∗ (δp ∗ υp) = g ∗ I = g

Conversly, multiplication of f ∗ υp = g by δp gives the proof.

Theorem 2.8. If f is completely multiplicative, then

(δpf)−1(n) = υp(n)f(n) for all n ≥1 (2.6)
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Proof. Given that f is completely multiplicative and let g(n) = υp(n)f(n)

(g ∗ (δpf))(n) =
∑
d|n

υp(d)f(d)δp

(n
d

)
f
(n
d

)
= f(n)

∑
d|n

υp(d)δp

(n
d

)
= I(n)

Since f(1) = 1 and I(n) = 0 for n > 1. Hence, g = (δpf)−1.

The following lemma connects the new arithemtic function υp(n) and infinite products.

Lemma 2.9. For any positive integer p > 1, x2 ≤ 1 and xk cos kθ 6= 1, 2, 3, . . .

∞∑
k=1

δp(k)xk
cos kθ

k
=

1

2
log

(1− 2xp cos pθ + x2p)
2/p

1− 2x cos θ + x2
(2.7)

Proof. The LHS of (2.7) can be splitted as follow as

∞∑
k=1

δp(k)xk
cos kθ

k
=

∞∑
k=1,p-k

xk
cos kθ

k
−
∞∑
k=1

xpk
cos pkθ

pk

Now adding and subtracting
∑∞

k=1 x
pk cos pkθ

pk
to the RHS of the above equation, and using the

following identity [6, pp-52],

∞∑
k=1

xk
cos kθ

k
= −1

2
log
(
1− 2x cos θ + x2

)
and after simplification, we obtain (2.7).

Theorem 2.10. If p is any prime, x2 ≤ 1 and xk cos kθ 6= 1, 2, 3, . . . , then

e2x cos θ =
∞∏
k=1

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos kθ + x2k

)υp(k)

k

(2.8)

Proof. Let us consider the following infinite series

∞∑
k=1

υp(k)

k
log

(
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos kθ + x2k

where all υp are defined from (2.1). Now using the lemma 2.9, we find that

=
∞∑
k=1

υp(k)

k

(
2
∞∑
i=1

δp(i)
cos kiθ

i
xki

)

Rearranging in ascending powers of x, using Theorem 2.5 and after simplification, we obtain
(2.8).
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Corollary 2.11. If x2 ≤ 1 and xk cos kθ 6= 1, 2, 3, . . . , then

e2x cos θ =
∞∏
k=1

(
1− 2xk cos θ + x2k

)−υ1(k)
k (2.9)

Proof. This can be easily found by using (2.7) and Theorem 2.5.

Remark 2.12. For any prime p, the following infinite products are obtained as some special cases
of Theorem 2.10 and Corollary 2.11

1. If θ = 0 in (2.8), then

ex =
∞∏
k=1

((
1− xkp

)2/p
1− xk

)υp(k)

k

2. If θ = 0 in (2.9), then we obtain following infinite product which can be rewritten as
Lambert series of Möbius function

ex =
∞∏
k=1

(1− xk)−
υ1(k)
k

3 Connecting infinite series and infinite products through νp(n)
In this section, we derive simple expressions through νp(n) that connect infinite series and infinite
products.

Theorem 3.1. For x2 ≤ 1, xk cos kθ 6= 1, k ∈ N and P (x, θ) =
∑∞

i=1 c(i)x
i cos iθ, if p is any

prime, then

e2P (x,θ) =
∞∏
k=1

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos θ + x2k

)a(k)

(3.1)

If p = 1, then

e−2P (x,θ) =
∞∏
k=1

(
1− 2xk cos θ + x2k

)a(k)
(3.2)

where

a(k) =
∑
d|k

c(d)
υp(k/d)

k/d
(3.3)

Proof. Given that P (x, θ) =
∑∞

i=1 c(i)x
i cos iθ, taking logarithm on both sides and using (2.9),

we obtain

=
1

2

∞∑
i=1

c(i)
∞∑
k=1

υp(k) log

(
1− 2xikp cos ikpθ + x2kip

)2/p
1− 2xik cos ikθ + x2ik

Rearranging the above, we have

=
1

2

∞∑
k=1

∑
d|k

c(d)
υp(k/d)

k/d

 log

(
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos kθ + x2k

Assuming a(k) =
∑

d|k c(d)υp(k/d)
k/d

and after simplification, we obtian (3.1). In a similar manner,
we easily obtain (3.2) from (2.9).
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Remark 3.2. Putting θ = 0 in (3.1) and (3.2), for any prime p, we obtain,

eP (x,0) =
∞∏
k=1

((
1− xkp

)2/p
1− xk

)a(k)

(3.4)

and if p = 1,

e−P (x,0) =
∞∏
k=1

(
1− xk

)a(k)
(3.5)

Corollary 3.3. If a(k) =
∑

d|k c(d)υp(k/d)
k/d

, then c(k) =
∑

d|k a(d) δp(k/d)
k/d

Proof. From Theorem 2.7, we find that f(k) =
∑

d|k υp(k/d)g(d). Comparing this with a(k) =∑
d|k c(d)υp(k/d)

k/d
, we have f(k) = ka(k) and g(d) = dc(d), where a(k) is function in k and

c(d) is function in d. Hence, kc(k) =
∑

d|k a(d)dδp(k/d). Now, simplifying this, we obtain the
corollary.

Example 3.4. We can express cosine function on 0 < x < 1 as follow as

cosx = (1− x2)−a(1)(1− x4)−a(2)(1− x6)−a(3) . . . (3.6)

where c(k) = 22k−1(22k−1)
k.2k!

|B2k|. It can be found by using (3.2) and the following infinite series
[6]

log

(
1

cosx

)
=

2(22 − 1)|B2|
1.2!

x2 +
23(24 − 1)|B4|

2.4!
x4 +

25(26 − 1)|B6|
3.6!

x6 + . . .

Theorem 3.5. For any prime p or p = 1, x 6= 0, x2 ≤ 1 and 0 < θ < 2π, if T (θ) =∑∞
k=1 t(k) cos kθ then

e2T (θ) =
∞∏
k=1

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos kθ + x2k

)t′(k)

(3.7)

where t′(k) =
∑

d|k
t(d)
xd

υp(k/d)

k/d

Proof. Given that T (θ) =
∑∞

i=1 t(i) cos iθ, using (2.7), we get

T (θ) =
1

2

∞∑
i=1

t(i)

xi

∞∑
k=1

υp(k) log

(
1− 2xikp cos ikpθ + x2ikp

)2/p
1− 2xik cos ikθ + x2ik

After simplification, we obtain

=
1

2

∞∑
k=1

log

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos kθ + x2k

)∑
d|k

t(d)

xd
υp(k/d)

k/d

Setting t′(k) =
∑

d|k
t(d)
xd

υp(k/d)

k/d
and transforming from logarithmic form to exponential form, we

obtain (3.7).

Example 3.6. We can write the infinite series
∑∞

k=1
cos kx
k

= − log 2 sin x
2

on [0 < θ < 2π] found
in [6], x 6= 0 as infinite produts as follow as

csc2
θ

2
= 4

∞∏
k=1

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos θ + x2k

)t′(i)

(3.8)

where t′(k) = 1
k

∑
d|k

υp(k/d)

xd
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4 Applications of the new arithmetic function νp
Let us start from the following lemmas that connect infinite series containing divisor sum that
extends over positive integers with infinite products.

Lemma 4.1. For any prime p, x2 ≤ 1 and xk cos kθ 6= 1, k ∈ N , if %(p)v (k) =
∑

dv |k d
vδp(k/d

v)

and αp(x, θ) =
∑∞

k=1 %
(p)
v (k)x

k

k
cos kθ, then

e2αp(x,θ) =
∞∏
k=1

(
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos θ + x2k

(4.1)

Proof. Setting a(k) = 1, for k = 1v, 2v, 3v, . . . and a(k) = 0 for other k’s then by Corollary 3.3,
we find that

c(k) =
∑
dv |k

δp(k/d
v)

k/dv
=

1

k

∑
dv |k

dvδp(k/d
v) =

1

k
%(p)v (k) (say)

Using Theorem (3.1) and setting P (x, θ) = αp(x, θ), we obtain (4.1).

Lemma 4.2. For x2 ≤ 1, xk cos kθ 6= 1, k ∈ N , if
ρv(k) =

∑
dv |k d

v

and
β(x, θ) =

∑∞
k=1 ρv(k)x

k

k
cos kθ,

then

e−2β(x,θ) =
∞∏
k=1

1− 2xk cos kθ + x2k (4.2)

Proof. Setting a(k) = 1, for k = 1v, 2v, 3v, . . . and a(k) = 0 for other k’s then by Corollary 3.3,
we find that ρv(k) =

∑
dv |k d

v. Using Theorem 3.2, we obtain (4.2).

4.1 Partition of an interger

Let us assume αp(x) =
∑∞

k=1 %
(p)
v (k)x

k

k
and β(x) =

∑∞
k=1 ρv(k)x

k

k
which are special cases of

αp(x, θ) and β(x, θ) at θ = 0.

Theorem 4.3. Let p(v)(n) denote number of partition of n into perfect v-th power, for |x| < 1
and v > 0

1 +
∞∑
n=0

p(v)(n)xn = eβ(x) (4.3)

and

p(v)(n) =
1

n!

dn
(
eβ(x)

)
dxn

∣∣∣∣∣
x=0

(4.4)

Proof. We know that

1 +
∞∑
n=1

p(v)(n)xn =
∞∏
k=1

1

1− xkv
(4.5)

Putting θ = 0 and setting β(x, 0) = β(x) in Lemma 4.2, we find that

eβ(x) =
∞∏
k=1

1

1− xkv
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Equating above equations, we get (4.3). Now, differentiating n times with respect to x and setting
x = 0, we obtain (4.4).

Theorem 4.3 clarifies that eβ(x) is a generating function for partition of an integer into perfect
v-th power in terms of divisor functions.

Corollary 4.4. For v, k ∈ N

np(v)(n) =
n∑
k=1

ρv(k)p(v)(n− k) (4.6)

Proof. Taking log on both sides of (4.3) and differentiating with respect to x,

∞∑
n=1

pv(n)nxn−1 =

(
∞∑
n=1

ρv(n)nxn−1

)(
1 +

∞∑
n=1

pv(n)xn

)
Simplifying the above expression and equating coefficients of x, we obtain (4.6).

Theorem 4.5. For v, k ∈ N

p(v)(n) =
∑ 1

i!j!h! . . . k!

ρv(1)iρv(2)jρv(3)h . . . ρv(l)
k

1i2j3h . . . lk
(4.7)

where ρv(k) =
∑

dv |k d
v and the symbol

∑
indicates summation over all solutions in non negative

integers of the equation i+ 2j + 3h+ . . .+ lk = n.

Proof. This is immediatly from (4.3), by expanding through the exponential function, simplifying
and equating respective coefficients of xn.

Remark 4.6. The following identity is obtained by putting v = 1 in (4.7)

p(n) =
∑ 1

i!j!h! . . . k!

σi1(1)σj1(2)σh1 (3) . . . σk1(l)

1i2j3h . . . lk

The symbol
∑

indicates summation over all solutions in non negative integers of the equation
i+ 2j + 3h+ . . .+ lk = n.

Theorem 4.7. If |r| < 1, βc(r, α) =
∑∞

k=1 ρv(k) cos kα and βs(r, α) =
∑∞

k=1 ρv(k) sin kα, then

p(v)(m) =
1

πrm

∫ 2π

0

eβc(r,α)βs(r, α) cosmαdα (4.8)

=
1

πrm

∫ 2π

0

eβc(r,α)βs(r, α) sinmαdα (4.9)

Proof. If we take x = reiα and |r| < 1 then

β(reiα) =
∞∑
k=1

ρv(k)rk cos kα + i

∞∑
k=1

ρv(k)rk sin kα

Setting βs(r, α) =
∑∞

k=1 ρv(k)rk sin kα and βc(r, α) =
∑∞

k=1 ρv(k)rk cos kα, then we have
β(reiα) = βc(r, α) + iβs(r, α). Using this in (4.5) and comparing real and imaginary parts,
we obtain

1 +
∞∑
n=1

p(v)(n)rn cosnα = eβc(r,α) cos βs(r, α) (4.10)
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∞∑
n=1

p(v)(n)rn sinnα = eβc(r,α) sin βs(r, α) (4.11)

Multiplying by cosmα and sinmα, m = 1, 2, 3, . . ., integrating on the interval (0, 2π).We obtain
(4.8) and (4.9).

Remark 4.8. Now, squaring and adding (4.10) and (4.11), we have(
1 +

∞∑
n=1

p(v)(n)rn cosnα

)2

+

(
∞∑
n=1

p(v)(n)rn sinnα

)2

= e2βc(r,α) (4.12)

Simplifying (4.12) and integrating on (0, 2π), we have

1 +
1

2

∞∑
n=1

p(v)(n)2r2n =
1

2π

∫ 2π

0

e2βc(r,α)dα (4.13)

We can find similar generating functions and identities for various partition functions. For
example, if β(x) =

∑∞
k=1

xk

k
ρ(k) and ρ(k) =

∑
d|k,odd d d, then eβ(x) is the generating function for

the number of partitions of n (say p(n)) into parts which are odd. Similarly, ρ(k) =
∑

d|k,even d d,
then eβ(x) generates the number of partitions of n into parts which are even and so on. Hence, we
find generalized identities for the partition function, as follows

np(n) =
n∑
k=1

ρ(k)p(n− k)

and

p(n) =
∑ 1

i!j!h! . . . k!

ρi(1)ρj(2)ρh(3) . . . ρk(l)

1i2j3h . . . lk

The symbol
∑

indicates summation over all solutions in non negative integers of the equation
i+ 2j + 3h+ . . .+ lk = n.

To find similar generating functions and identities for number of partitions of n into parts
which are unequal, set p = 2, θ = 0 and replace α2(x, 0) by α2(x). Hence, we have eα2(x) =∏∞

k=1 1 + xk (where α2(x) =
∑∞

k=0 %
(2)
v (k)x

k

k
and %(2)v (k) =

∑
d|k dδ2(k/d)). Now, eα2(x) gener-

ates the number of partitions of n into parts which are unequal. Similarly, we can find generating
functions of other cases such as distinct primes, odd, etc. So, we generalize the following identi-
ties

np(n) =
n∑
k=1

%(2)v (k)p(n− k)

and

p(n) =
∑ 1

i!j!h! . . . k!

%
(2)
v (1)i%

(2)
v (2)j%

(2)
v (3)h . . . %

(2)
v (l)k

1i2j3h . . . lk

4.2 Some special infinite products
If p is any positive integer, then varying the values of a(k) by Corollary 3.3, we find some in-
teresting infinite products connecting with divisor sum extended over positive integers. Let us
consider for any prime p,

e2αp(x,θ) =
∞∏
k=1

((
1− 2xkp cos kpθ + x2kp

)2/p
1− 2xk cos θ + x2k

)a(k)

(4.14)
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and when p = 1

e−2β(x,θ) =
∞∏
k=1

(
1− 2xk cos kθ + x2p

)a(k)
(4.15)

The values of α(x, θ) and β(x, θ) for various a’s are listed below:

1. If a(k) = 1
ks
, k ∈ N

αp(x, θ) =
∞∑
k=1

xk cos kθ

k

∑
d|k

δp(k/d)

ds−1

and

β(x, θ) =
∞∑
k=1

σs−1(x)

k
xk cos kθ.

2. Let a(k) = 1
ks
, if k is prime and a(k) = 0 for other k’s

αp(x, θ) =
∞∑
k=1

xk cos kθ

k

∑
d|k

prime p

δp(k/d)

ds−1

and

β(x, θ) =
∞∑
k=1

xk cos kθ

k

∑
d|k

prime p

1

ds−1
.

3. Let a(k) = φ(k)/ks, where φ is Euler’s totient function

αp(x, θ) =
∞∑
k=1

xk cos kθ

k

∑
d|k

φ(d)
δp(k/d)

ds−1

and

β(x, θ) =
∞∑
k=1

xk cos kθ

k

∑
d|k

φ(d)

ds−1
.

In particular when s = 1, and using the identity
∑

d|n φ(d) = n, we have β(x, θ) =∑∞
k=1 x

k cos kθ

4. Let a(k) = Λ(k)/k (where Λ is Mangoldt’s function) and using the identity
∑

d|n Λ(d) =
log n, we have

β(x, θ) =
∞∑
k=1

log k

k
xk cos kθ.

5. Let a(k) = µ(k)/k2 and using the identity φ(n)/n =
∑

d|n
µ(d)
d

, we have

β(x, θ) =
∞∑
k=1

φ(k)

k2
xk cos kθ.
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6. Let a(k) = µ2(k)
kφ(k)

and using the identity n
φ(n)

=
∑

d|n
µ2(d)
φ(d)

, we have

β(x, θ) =
∞∑
k=1

xk cos kθ

φ(k)
.

7. Let a(k) = µ2(k)
k

and using the identity 2v(n) =
∑

d|n µ
2(d) where v(1) = 0 and v(n) = k

if n = pa11 . . . pa
k

k , we have

β(x, θ) =
∞∑
k=1

2v(k)

k
xk cos kθ.

5 Conclusion
In conclusion, we note that some properties and applications of a new arithmetic function υp(n)
have been developed in this article. Firstly, we have introduced υp(n) and proved some of its prop-
erties analogous to Möbius function. Secondly, we have derived some simpler infinite products
of exponential function and some new expressions to connect infinite series and infinite products
in terms of υp(n). Finally, we have developed some applications to generate functions of various
partition functions of an integer, simple partition identities and special infinite products in terms
of multiplicative functions.

References
[1] Andrews, G. E. Number Theory, W. B. Saunders Co., Philadelphia, 1971.

[2] Andrews, G. E, The Theory Partitions, Cambridge University Press, UK, 1998.

[3] Andrews, G. E, Eriksson K, Integer Partitions, Cambridge University Press, UK, 2004.

[4] Apostal, T. M. Introduction to Analytic Number Theory, Springer International Student Edi-
tion, New York (1989).

[5] Bateman, P. T, H. G. Diamond. Analytic Number Theory, World Scientific Publishing Co Ltd,
USA, 2004.

[6] Gradshteyn, I. S, I. M. Ryzhik. Tables of Integrals, Series and Products, 6 Ed, Academic
Press (2000), USA

[7] Sándor, J., B. Crstici. Handbook of Number Theory II, Springer, Kluwer Acedemic Publish-
ers, Netherland, 2004.

48


