Uniqueness of the extension of the $D(4k^2)$-triple
\[\{k^2 - 4, k^2, 4k^2 - 4\}\]

Yasutsugu Fujita\(^1\) and Alain Togbé\(^2\)

\(^1\) Department of Mathematics, College of Industrial Technology
Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp

\(^2\) Mathematics Department, Purdue University North Central
1401 S, U.S. 421, Westville, IN 46391, USA
e-mail: atogbe@pnc.edu

Abstract: Let n be a nonzero integer. A set of m distinct positive integers is called a $D(n)$-m-tuple if the product of any two of them increased by n is a perfect square. Let k be an integer greater than two. In this paper, we show that if \(\{k^2 - 4, k^2, 4k^2 - 4, d\}\) is a $D(4k^2)$-quadruple, then $d = 4k^4 - 8k^2$.

Keywords: Diophantine tuples, Simultaneous Diophantine equations.
AMS Classification: 11D09, 11J68

1 Introduction

Let n be a nonzero integer. A set of m distinct positive integers \(\{a_1, \ldots, a_m\}\) is called a Diophantine m-tuple with the property $D(n)$ or a $D(n)$-m-tuple, if $a_ia_j + n$ is a perfect square for each i, j with $1 \leq i < j \leq m$.

The first example of a $D(1)$-quadruple was found by Fermat, which was the set \(\{1, 3, 8, 120\}\). Baker and Davenport ([1]) showed that \(\{1, 3, 8, 120\}\) cannot be extended to a $D(1)$-quintuple. There are several generalizations of this result (see [17] and its references); for example, \(\{k - 1, k + 1\}\) cannot be extended to a $D(1)$-quintuple ([14]). A folklore conjecture says that there does not exist a $D(1)$-quintuple, and Dujella ([7]) showed that there does not exist a $D(1)$-sextuple and that there exist only finitely many $D(1)$-quintuples.

The $n = 4$ case can be considered in the same way as the $n = 1$ case (see [12] and its references) and it is conjectured that there does not exist a $D(4)$-quintuple. The following is a stronger version of this conjecture.

Conjecture 1.1. ([10, Conjecture 1]) If \(\{a, b, c, d\}\) is a $D(4)$-quadruple with $a < b < c < d$, then $d = a + b + c + (abc + rst)/2$, where r, s, t are positive integers defined by $ab + 4 = r^2$, $ac + 4 = s^2$, $bc + 4 = t^2$.

42
In general, if \(n \equiv 2 \) (mod 4), then there does not exist a \(D(n) \)-quadruple ([3, 16, 19]). Dujella ([4]) showed that if \(n \not\equiv 2 \) (mod 4) and if \(n \not\in S := \{-4, -3, -1, 3, 5, 8, 12, 20\} \), then there exists at least one \(D(n) \)-quadruple, and conjectured the following.

Conjecture 1.2. ([5]) *There does not exist a \(D(n) \)-quadruple for \(n \in S \).*

There are several results supporting Conjecture 1.2 for the \(n = -1 \) case (see [8] and its references), and the validity of Conjecture 1.2 for \(n = -1 \) implies the one for \(n = -4 \) ([4, Remark 3]). For \(n \not\in \{\pm 1, \pm 4\} \), it is not easy to show either nonexistence or uniqueness of extension of a \(D(n) \)-triple, unless an argument using congruences modulo a power of 2 works. This is why we have to know the fundamental solutions of at least two of the Pell equations

\[
ay^2 - bx^2 = 1, \quad az^2 - cx^2 = 1, \quad bz^2 - cy^2 = 1.
\]

The first author ([13]) showed that the \(D(4k) \)-triple \(\{1, 4k(k-1), 4k^2 + 1\} \) with \(|k| \) prime cannot be extended to a \(D(4k) \)-quadruple. Moreover, he ([15]) proved that the \(D(\mp k^2) \)-triple \(\{k^2, k^2 \pm 1, 4k^2 \pm 1\} \) cannot be extended to a \(D(\mp k^2) \)-quintuple. In either case, \(ab \) and \(ac \) are of Richaud-Degert type ([20]), which gives the fundamental solutions of the corresponding Pell equations.

Furthermore, the Padé approximation method (a theorem of Bennett ([2]) or of Rickert ([21])) can work for the \(D(\pm k^2) \)-triple. Since \(D(\pm 4) \)-tuples have similar properties to \(D(\pm 1) \)-tuples as mentioned above, it is natural to ask whether the same is valid for \(D(\pm 4k^2) \)-tuples and \(D(\pm k^2) \)-tuples. This leads us to consider the \(D(\mp 4k^2) \)-triple \(\{k^2, k^2 \pm 4, 4k^2 \pm 4\} \).

Suppose that \(\{k^2, k^2 \pm 4, 4k^2 \pm 4, d\} \) is a \(D(\mp 4k^2) \)-quadruple. If \(k \) is even, say \(k = 2k' \), this is equivalent to that \(\{(k')^2, (k')^2 \pm 4, 4(k')^2 \pm 1, d'\} \) is a \(D(\mp (k')^2) \)-quadruple with some integer \(d' \). It follows from Theorems 1.4 and 1.5 in [15] that we may assume that \(k \) is odd. Then, since \(-4k^2 \equiv 12 \) (mod 16), the set \(\{k^2, k^2 \pm 4, 4k^2 \pm 4, d\} \) cannot be a \(D(-4k^2) \)-quadruple by Remark 3 in [4], stating that if \(\{a_1, a_2, a_3, a_4\} \) is a \(D(16l + 12) \)-quadruple with some integer \(l \), then every \(a_i \) is even. Therefore, the \(D(4k^2) \)-quadruple \(\{k^2 - 4, k^2, 4k^2 - 4, d\} \) with \(k \) odd is only to be considered. Our theorem in this paper is the following.

Theorem 1.3. *Let \(k \) be an integer greater than two. If \(\{k^2 - 4, k^2, 4k^2 - 4, d\} \) is a \(D(4k^2) \)-quadruple, then \(d = 4k^4 - 8k^2 \).*

Since Theorem 1.3 with \(k \) even follows immediately from Theorem 1.4 in [15], we will assume that \(k \) is odd throughout this paper.

The quadruple in Theorem 1.3 can be interpreted as the quadruple \(\{k^2 - 4, k^2, x_{1,0}, x_{2,0}\} \) in [4], where \(x_{n,m} \) and \(y_{n,m} \) are double sequences satisfying \(x_{n,0} = (y_{n,0}^2 - 4k^2)/(k^2 - 4) \) and \(y_{0,0} = 2k, \ y_{1,0} = 2k^2 - 4, \ y_{n+1,0} = ky_{n,0} - y_{n-1,0} \). Another interpretation of the quadruple is to regard it as an analogue of the quadruple in Conjecture 1.1. More generally, if \(\{a, k^2b, c\} \) is a \(D(4k^2) \)-triple, then \(\{a, k^2b, c, d\} \) is a \(D(4k^2) \)-quadruple with \(d = a + k^2b + c + (abc + rst)/2 \), where \(r, s, t \) are positive integers defined by \(ab + 4 = r^2 \), \(ac + 4k^2 = s^2 \), \(bc + 4 = t^2 \). Thus, Theorem 1.3 gives an example for which an analogue of Conjecture 1.1 holds. Note that this analogy does not hold in general. Filipin ([11, Theorem 3.10]) showed that if \(\{1, 20, 33, d\} \) is a \(D(16) \)-quadruple, then \(d = 105 \) or 273.

The organization of this paper is as follows. In Section 1, we transform the problem into a system of Diophantine equations, whose solution can be expressed as the intersection of two
recurrence sequences. The congruence method due to Dujella then gives a lower bound for the number of terms. In Section 3, the lower bound and the theorem of Bennett together yield \(k \leq 511 \). Finally, in Section 4 using the reduction method ([1, 9]) we arrive at a contradiction for each \(k \) with \(k \leq 511 \).

2 A lower bound for solutions

Let \(k \) be an odd integer greater than two. Suppose that \(\{k^2 - 4, k^2, 4k^2 - 4, d\} \) is a \(D(4k^2) \)-quadruple. Then, there exist positive integers \(x, y', z' \) such that

\[
(k^2 - 4)d + 4k^2 = x^2, \quad k^2d + 4k^2 = (y')^2, \quad (4k^2 - 4)d + 4k^2 = (z')^2. \tag{2.1}
\]

Clearly we have \(y' \equiv 0 \pmod{k} \) and \(z' \equiv 0 \pmod{2} \), which enable us to write \(y' = ky \) and \(z' = 2z \) with positive integers \(y \) and \(z \). Eliminating \(d \) from (2.1), we obtain the system of Diophantine equations

\[
x^2 - (k^2 - 4)y^2 = 16, \tag{2.2}
\]
\[
z^2 - (k^2 - 1)y^2 = 4 - 3k^2. \tag{2.3}
\]

Since \(k \) is odd, \(k^2 - 4 \equiv 5 \pmod{8} \). Hence, (2.2) implies that both \(x \) and \(y \) are even, say \(x = 2X \) and \(y = 2Y \). Then, (2.2) can be rewritten as \(X^2 - (k^2 - 4)Y^2 = 4 \). The positive solutions of this Pell equation have the form

\[
\frac{X + Y\sqrt{k^2 - 4}}{2} = \left(\frac{k + \sqrt{k^2 - 4}}{2} \right)^m
\]

and hence, the positive solutions of (2.2) have the form

\[
x + y\sqrt{k^2 - 4} = 4 \left(\frac{k + \sqrt{k^2 - 4}}{2} \right)^m \text{ with nonnegative integers } m. \tag{2.4}
\]

The positive solutions of (2.3) can be expressed as follows.

Lemma 2.1. Let \((z, y)\) be a positive solution of the Diophantine equation (2.3). Then, there exist a nonnegative integer \(n \) and a solution \((z_0, y_0)\) of (2.3) such that

\[
z + y\sqrt{k^2 - 1} = (z_0 + y_0\sqrt{k^2 - 1})(k + \sqrt{k^2 - 1})^n \tag{2.5}
\]

with

\[
|z_0| < \sqrt{\frac{3}{2} k^3}, \quad 0 < y_0 < \sqrt{2k}. \tag{2.6}
\]

Proof. We omit the proof, since it proceeds along the same lines as the proof of Lemma 1 in [6] or Lemma 3.1 in [15].

Lemma 2.2. If \(v_m = w_n \) has a solution, then \(m \) is odd, \(n \) is even and \(z_0 = \pm k, y_0 = 2 \).
Proof. By (2.4) and (2.5), we may write $y = v_m = w_n$, where
\[
v_0 = 0, \ v_1 = 2, \ v_{m+2} = kv_{m+1} - v_m
\]
and
\[
w_0 = y_0, \ w_1 = ky_0 + z_0, \ w_{n+2} = 2kw_{n+1} - w_n.
\]
Hence,
\[(v_m \pmod{2k})_{m \geq 0} = (0, 2, 0, -2, 0, 2, \ldots)\]
and
\[(w_n \pmod{2k})_{n \geq 0} = (y_0, ky_0 + z_0, -y_0, -ky_0 - z_0, y_0, \ldots).\]
Suppose that $v_m \equiv 0 \pmod{2k}$. Then either $y_0 \equiv 0 \pmod{2k}$ or $ky_0 + z_0 \equiv 0 \pmod{2k}$. By
(2.6), we must have $ky_0 + z_0 \equiv 0 \pmod{2k}$. Then, $z_0 \equiv 0 \pmod{k}$ implies $y_0^2 \equiv 4 \pmod{k^2}$.
It follows from (2.6) that $y_0^2 = 4$, which implies that z_0 is even. This contradicts (2.3). Hence, m
is odd and $v_m \equiv \pm 2 \pmod{2k}$. Then, either $y_0 \equiv \pm 2 \pmod{2k}$ or $ky_0 + z_0 \equiv \pm 2 \pmod{2k}$.
If $ky_0 + z_0 \equiv \pm 2 \pmod{2k}$, then $z_0 \equiv \pm 2 \pmod{k}$, say $z_0 = \alpha k \pm 2$, where α is an integer
with $|\alpha| < \sqrt{3k/2} + 2/k$ by (2.6). Thus, $y_0^2 \equiv \pm 4\alpha k \pmod{k^2}$ and by (2.6) we have $k^2 - 4|\alpha|k$.
If $k \geq 29$, then $y_0^2 = k^2 - 4|\alpha|k > 2k$, which contradicts (2.6). The only odd integers k with
$3 \leq k \leq 27$ such that (z_0, y_0) with y_0 odd is a solution of (2.3) satisfying (2.6) are 7 and 19, and
then $(z_0, y_0) = (17, 3)$ and $(89, 5)$, respectively (note that y_0 must be odd, since y_0 and z_0 now
have the same parity and z_0 is odd). However, in either case $z_0 \pm 2 \not\equiv 0 \pmod{k}$, that is, z_0 is
not of the form $\alpha k \pm 2$. Therefore, n is even and $y_0 \equiv \pm 2 \pmod{2k}$. It follows from (2.6) that
$y_0 = 2$ and $z_0 = \pm k$.

Now one can easily obtain the following three lemmas in the same ways as Lemmas 4.2 to 4.4 in [15].

Lemma 2.3. If $v_m = w_n$ has a solution with $n \geq 2$ in the case of $z_0 = k$ or with $n \geq 6$ in the
case of $z_0 = -k$, then $n \geq 2k^2 - 6$.

Lemma 2.4. If $y = w_n$, then $\log y > (n - 1) \log(1.942k)$.

Lemma 2.5. If $v_m = w_n$ has a solution with $n \neq 0$, then $m > n$. Moreover, if $k \geq 5$, then
$m \leq 2n$; if $k = 3$, then $m \leq 3n$.

3 Application of a theorem of Bennett

Let $\theta_1 = \sqrt{1 - 4/k^2}$ and $\theta_2 = \sqrt{1 - 1/k^2}$. Then, a theorem ([2, Theorem 3.2]) of Bennett can
be applied if $k^2 \geq \max\{4^9, 1^9\}$, that is, $k > 512$.

Theorem 3.1. If $k > 512$, then the numbers θ_1 and θ_2 satisfy
\[
\max\left\{\frac{\theta_1 - p_1}{q}, \frac{\theta_2 - p_2}{q}\right\} > (2680k^2)^{-1}q^{-\lambda}
\]
for all integers p_1, p_2, q with $q > 0$, where
\[
\lambda = 1 + \frac{\log(660k^2)}{\log(0.0116k^4)} < 2.
\]
The following lemma is similar to Lemma 3.6 in [15].

Lemma 3.2. All positive solutions of the system of Diophantine equations (2.2) and (2.3) satisfy
\[
\max \left\{ \left| \frac{\theta_1 - x}{ky} \right|, \left| \frac{\theta_2 - z}{ky} \right| \right\} < \frac{2.2}{y^2}.
\]

Combining Theorem 3.1 and Lemma 3.2, one can bound \(\log y \) above in terms of \(k \).

Lemma 3.3. Suppose that \(\{k^2 - 4, k^4, 4k^2 - 4, d\} \) is a \(D(4k^2) \)-quadruple with \(k > 512 \). Then,
\[
\log y < \frac{8\log(8.77k)\log(0.329k)}{\log(0.00419k)}.
\]

Proof. Applying Theorem 3.1 with \(p_1 = x, p_2 = z, q = ky \), we see from Lemma 3.2 that
\[
(2680k^2)^{-1}(ky)^{-\lambda} < \frac{2.2}{y^2}.
\]
Noting \(\lambda < 2 \), one can easily see that the desired inequality holds. \(\square \)

Proposition 3.4. Suppose that \(\{k^2 - 4, k^2, 4k^2 - 4, d\} \) is a \(D(4k^2) \)-quadruple with \(d \neq 4k^4 - 8k^2 \). Then, \(k \leq 511 \).

Proof. If \(n = 0 \), then \(d = 0 \), which cannot be an element in a \(D(4k^2) \)-quadruple. If \(n = 2 \) with \(z_0 = -k \), then \(d = 4k^4 - 8k^2 \). Denoting \(w_4 \) with \(z_0 = -k \) by \(w_4^- \), we easily see that
\[
v_5 < w_4^- < v_7;
\]
indeed, \(w_4^- = 8k^4 - 12k^2 + 2 \), \(v_5 = 2k^4 - 6k^2 + 2 \), \(v_7 = 2k^6 - 10k^4 + 12k^2 - 2 \). Since \(m \) is odd and \(n \) is even by Lemma 2.2, we may apply Lemma 2.3. Suppose that \(k \geq 513 \). Then, Lemmas 2.3, 2.4 and 3.3 together imply that
\[
\frac{2k^2 - 7}{8} < \frac{\log(8.77k)\log(0.329k)}{\log(1.942k)\log(0.00419k)} =: f(k).
\]
Since \(f(k) \) is a decreasing function for \(k \geq 513 \), we have \(f(k) \leq f(513) < 9 \), which contradicts (3.1). \(\square \)

4 The reduction method

By the standard method (see, e.g., [15, Lemma 3.9]), the following estimate on the linear form in three logarithms is obtained.

Lemma 4.1. If \(v_m = w_n \) has a solution with \(n \neq 0 \), then
\[
0 < m \log \alpha_1 - n \log \alpha_2 + \log \alpha_3 < 10\alpha_2^{-m'}, \tag{4.1}
\]
where
\[
\alpha_1 = \frac{k + \sqrt{k^2 - 4}}{2}, \quad \alpha_2 = k + \sqrt{k^2 - 1}, \quad \alpha_3 = \frac{4\sqrt{k^2 - 1}}{\sqrt{k^2 - 4(2\sqrt{k^2 - 1} \pm k)}},
\]
and \(m' = m \) if \(k \geq 5 \); \(m' = 2m/3 \) if \(k = 3 \).
The following theorem of Matveev gives an upper bound for m.

Theorem 4.2. ([18]) Let Λ be a linear form in logarithms of l multiplicatively independent totally real algebraic numbers $\alpha_1, \ldots, \alpha_l$ with rational integer coefficients b_1, \ldots, b_l ($b_i \neq 0$). Let $h(\alpha_j)$ denote the absolute logarithmic height of α_j for $1 \leq j \leq l$. Define the numbers $D, A_j (1 \leq j \leq l)$ and B by $D = [\mathbb{Q}(\alpha_1, \ldots, \alpha_l) : \mathbb{Q}], A_j = \max\{ Dh(\alpha_j), |\log \alpha_j|\}, B = \max\{1, \max\{|b_j|A_j/A_i; 1 \leq j \leq l\}\}$. Then,

$$\log |\Lambda| > -C(l)C_0W_0D^2\Omega,$$

where

$$C(l) = \frac{8}{(l-1)!}(l+2)(2l+3)(4e(l+1))^{l+1},$$

$$C_0 = \log(e^{4.4l^7}l^{5.5}D^2\log(eD)),$$

$$W_0 = \log(1.5eBD\log(eD)), \quad \Omega = A_1 \cdots A_l.$$

Proposition 4.3. Suppose that $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$-quadruple. Then $m < 10^{17}$.

Proof. We apply Theorem 4.2 with $l = 3$, $D = 4$, $b_1 = m$, $b_2 = -n$, $b_3 = 1$. We have $A_1 = 2\log \alpha_1 < 2\log k$ and $A_2 = 2\log \alpha_2 < 2\log(2k)$. Since the minimal polynomial of α_3 over \mathbb{Z} is

$$(k^2 - 4)^2(3k^2 - 4)^2X^4 - 32(k^2 - 1)(k^2 - 4)(5k^2 - 4)X^2 + 256(k^2 - 1)^2$$

up to a multiple of a constant, and $\gcd((k^2 - 4)(3k^2 - 4), 16(k^2 - 1))$ divides 3, the leading coefficient a_0 of the minimal polynomial of α_3 over \mathbb{Z} satisfies

$$\frac{(k^2 - 4)^2(3k^2 - 4)^2}{9} \leq a_0 \leq (k^2 - 4)^2(3k^2 - 4)^2.$$

Since α_3 with the minus sign is less than 1.91 and α_3 with the plus sign is less than 1, we have

$$A_3 = 4h(\alpha_3) < \log(1.91^2(k^2 - 4)^2(3k^2 - 4)^2) < 8\log(1.55k),$$

$$A_3 > \log\left(\frac{(k^2 - 4)^2(3k^2 - 4)^2}{9}\right) > 8\log(0.829k).$$

Hence, we obtain the following:

$$B < \max\left\{\frac{2m\log k}{8\log(0.829k)}, \frac{2n\log(2k)}{8\log(0.829k)}\right\} < \frac{m\log(2k)}{4\log(0.829k)} < 0.5m,$$

$$C(3) = \frac{8}{2!} \cdot 5 \cdot 9(16e)^4 < 6.45 \cdot 10^8,$$

$$C_0 = \log\left(e^{4.4+7}3^{5.5}16\log(4e)\right) < 29.9,$$

$$W_0 = \log(1.5eBD\log(4e)) < \log(20m),$$

$$\Omega = A_1A_2A_3 < 32\log(k)\log(2k)\log(1.55k) < 73.1(\log k)^3.$$
Assume that \(m \geq 10 \). Since \(\log(10\alpha_1^{-m'}) < -m' \log k \), we see from Lemma 4.1 that

\[
2.3 \cdot 10^{13} (\log k)^2 > \frac{m'}{\log(20m)} =: F(m).
\]

By Proposition 3.4, we have \(F(m) < 2.3 \cdot 10^{13} (\log(511))^2 < 9 \cdot 10^{14} \). Since \(F(m) \) is increasing and \(F(10^{17}) > 10^{15} \), we obtain \(m < 10^{17} \).

\[\square \]

Proof of Theorem 1.3. Dividing (4.1) by \(\log \alpha_2 \), we have

\[
0 < m\kappa - n + \mu < AB^{-m},
\]

where

\[
\kappa = \frac{\log \alpha_1}{\log \alpha_2}, \quad \mu = \frac{\log \alpha_3}{\log \alpha_2}, \quad A = \frac{10}{\log \alpha_2}, \quad B = \alpha_2 \ (k \geq 5) \text{ or } \alpha_2^{2/3} \ (k = 3).
\]

Lemma 4.4. ([9, Lemma 5 a]) Let \(M \) be a positive integer and \(p/q \) a convergent of the continued fraction expansion of \(\kappa \) such that \(q > 6M \). Put \(\epsilon = ||\mu q|| - M||\kappa q|| \), where \(|| \cdot || \) denotes the distance from the nearest integer. If \(\epsilon > 0 \), then the inequality (4.2) has no solution in the range

\[
\frac{\log(Aq/\epsilon)}{\log B} \leq m \leq M.
\]

As seen at the beginning in the proof of Proposition 3.4, we may assume that \(n \geq 4 \) for \(z_0 = k \) and \(n \geq 6 \) for \(z_0 = -k \). We can thus use Lemma 2.3, which implies \(n \geq 2k^2 - 6 \). We apply Lemma 4.4 with \(M = 10^{17} \) for odd \(k \) with \(3 \leq k \leq 511 \) and for each sign of \(\alpha_3 \). For \(5 \leq k \leq 511 \), the second convergent is needed in 2 cases and the third convergent is needed in 2 cases. In any case, the first step of reduction gives \(m \leq 21 \), which contradicts Lemma 2.3 with \(k \geq 5 \). For \(k = 3 \), the first step of reduction gives \(m \leq 40 \) and the second step gives \(m \leq 10 \) (the second convergent is needed only in the first step for the minus sign of \(\alpha_3 \)). This contradicts Lemma 2.3 with \(k = 3 \), and completes the proof of Theorem 1.3.

\[\square \]

References

