Uniqueness of the extension of the $D(4k^2)$ -triple { $k^2 - 4, k^2, 4k^2 - 4$ }

Yasutsugu Fujita¹ and Alain Togbé²

¹ Department of Mathematics, College of Industrial Technology Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan e-mail: fujita.yasutsugu@nihon-u.ac.jp

² Mathematics Department, Purdue University North Central 1401 S, U.S. 421, Westville, IN 46391, USA e-mail: atogbe@pnc.edu

Abstract: Let n be a nonzero integer. A set of m distinct positive integers is called a D(n)-mtuple if the product of any two of them increased by n is a perfect square. Let k be an integer greater than two. In this paper, we show that if $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple, then $d = 4k^4 - 8k^2$.

Keywords: Diophantine tuples, Simultaneous Diophantine equations. **AMS Classification:** 11D09, 11J68

1 Introduction

Let n be a nonzero integer. A set of m distinct positive integers $\{a_1, \ldots, a_m\}$ is called a Diophantine m-tuple with the property D(n) or a D(n)-m-tuple, if $a_i a_j + n$ is a perfect square for each i, j with $1 \le i < j \le m$.

The first example of a D(1)-quadruple was found by Fermat, which was the set $\{1, 3, 8, 120\}$. Baker and Davenport ([1]) showed that $\{1, 3, 8, 120\}$ cannot be extended to a D(1)-quintuple. There are several generalizations of this result (see [17] and its references); for example, $\{k - 1, k+1\}$ cannot be extended to a D(1)-quintuple ([14]). A folklore conjecture says that there does not exist a D(1)-quintuple, and Dujella ([7]) showed that there does not exist a D(1)-sextuple and that there exist only finitely many D(1)-quintuples.

The n = 4 case can be considered in the same way as the n = 1 case (see [12] and its references) and it is conjectured that there does not exist a D(4)-quintuple. The following is a stronger version of this conjecture.

Conjecture 1.1. ([10, Conjecture 1]) If $\{a, b, c, d\}$ is a D(4)-quadruple with a < b < c < d, then d = a + b + c + (abc + rst)/2, where r, s, t are positive integers defined by $ab + 4 = r^2$, $ac + 4 = s^2$, $bc + 4 = t^2$.

In general, if $n \equiv 2 \pmod{4}$, then there does not exist a D(n)-quadruple ([3, 16, 19]). Dujella ([4]) showed that if $n \not\equiv 2 \pmod{4}$ and if $n \not\in S := \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then there exists at least one D(n)-quadruple, and conjectured the following.

Conjecture 1.2. ([5]) *There does not exist a* D(n)*-quadruple for* $n \in S$.

There are several results supporting Conjecture 1.2 for the n = -1 case (see [8] and its references), and the validity of Conjecture 1.2 for n = -1 implies the one for n = -4 ([4, Remark 3]). For $n \notin \{\pm 1, \pm 4\}$, it is not easy to show either nonexistence or uniqueness of extension of a D(n)-triple, unless an argument using congruences modulo a power of 2 works. This is why we have to know the fundamental solutions of at least two of the Pell equations

$$ay^2 - bx^2 = 1$$
, $az^2 - cx^2 = 1$, $bz^2 - cy^2 = 1$.

The first author ([13]) showed that the D(4k)-triple $\{1, 4k(k-1), 4k^2 + 1\}$ with |k| prime cannot be extended to a D(4k)-quadruple. Moreover, he ([15]) proved that the $D(\mp k^2)$ -triple $\{k^2, k^2 \pm 1, 4k^2 \pm 1\}$ cannot be extended to a $D(\mp k^2)$ -quintuple. In either case, ab and ac are of Richaud-Degert type ([20]), which gives the fundamental solutions of the corresponding Pell equations. Furthermore, the Padé approximation method (a theorem of Bennett ([2]) or of Rickert ([21])) can work for the $D(\mp k^2)$ -triple. Since $D(\pm 4)$ -tuples have similar properties to $D(\pm 1)$ -tuples as mentioned above, it is natural to ask whether the same is valid for $D(\pm 4k^2)$ -tuples and $D(\pm k^2)$ tuples. This leads us to consider the $D(\mp 4k^2)$ -triple $\{k^2, k^2 \pm 4, 4k^2 \pm 4\}$.

Suppose that $\{k^2, k^2 \pm 4, 4k^2 \pm 4, d\}$ is a $D(\mp 4k^2)$ -quadruple. If k is even, say k = 2k', this is equivalent to that $\{(k')^2, (k')^2 \pm 1, 4(k')^2 \pm 1, d'\}$ is a $D(\mp (k')^2)$ -quadruple with some integer d'. It follows from Theorems 1.4 and 1.5 in [15] that we may assume that k is odd. Then, since $-4k^2 \equiv 12 \pmod{16}$, the set $\{k^2, k^2 + 4, 4k^2 + 4, d\}$ cannot be a $D(-4k^2)$ -quadruple by Remark 3 in [4], stating that if $\{a_1, a_2, a_3, a_4\}$ is a D(16l + 12)-quadruple with some integer l, then every a_i is even. Therefore, the $D(4k^2)$ -quadruple $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ with k odd is only to be considered. Our theorem in this paper is the following.

Theorem 1.3. Let k be an integer greater than two. If $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple, then $d = 4k^4 - 8k^2$.

Since Theorem 1.3 with k even follows immediately from Theorem 1.4 in [15], we will assume that k is odd throughout this paper.

The quadruple in Theorem 1.3 can be interpreted as the quadruple $\{k^2 - 4, k^2, x_{1,0}, x_{2,0}\}$ in [4], where $x_{n,m}$ and $y_{n,m}$ are double sequences satisfying $x_{n,0} = (y_{n,0}^2 - 4k^2)/(k^2 - 4)$ and $y_{0,0} = 2k, y_{1,0} = 2k^2 - 4, y_{n+1,0} = ky_{n,0} - y_{n-1,0}$. Another interpretation of the quadruple is to regard it as an analogue of the quadruple in Conjecture 1.1. More generally, if $\{a, k^2b, c\}$ is a $D(4k^2)$ -triple, then $\{a, k^2b, c, d\}$ is a $D(4k^2)$ -quadruple with $d = a + k^2b + c + (abc + rst)/2$, where r, s, t are positive integers defined by $ab + 4 = r^2$, $ac + 4k^2 = s^2$, $bc + 4 = t^2$. Thus, Theorem 1.3 gives an example for which an analogue of Conjecture 1.1 holds. Note that this analogy does not hold in general. Filipin ([11, Theorem 3.10]) showed that if $\{1, 20, 33, d\}$ is a D(16)-quadruple, then d = 105 or 273.

The organization of this paper is as follows. In Section 1, we transform the problem into a system of Diophantine equations, whose solution can be expressed as the intersection of two recurrence sequences. The congruence method due to Dujella then gives a lower bound for the number of terms. In Section 3, the lower bound and the theorem of Bennett together yield $k \leq 511$. Finally, in Section 4 using the reduction method ([1, 9]) we arrive at a contradiction for each k with $k \leq 511$.

2 A lower bound for solutions

Let k be an odd integer greater than two. Suppose that $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple. Then, there exist positive integers x, y', z' such that

$$(k^{2}-4)d + 4k^{2} = x^{2}, \ k^{2}d + 4k^{2} = (y')^{2}, \ (4k^{2}-4)d + 4k^{2} = (z')^{2}.$$
 (2.1)

Clearly we have $y' \equiv 0 \pmod{k}$ and $z' \equiv 0 \pmod{2}$, which enable us to write y' = ky and z' = 2z with positive integers y and z. Eliminating d from (2.1), we obtain the system of Diophantine equations

$$x^2 - (k^2 - 4)y^2 = 16, (2.2)$$

$$z^{2} - (k^{2} - 1)y^{2} = 4 - 3k^{2}.$$
(2.3)

Since k is odd, $k^2 - 4 \equiv 5 \pmod{8}$. Hence, (2.2) implies that both x and y are even, say x = 2X and y = 2Y. Then, (2.2) can be rewritten as $X^2 - (k^2 - 4)Y^2 = 4$. The positive solutions of this Pell equation have the form

$$\frac{X + Y\sqrt{k^2 - 4}}{2} = \left(\frac{k + \sqrt{k^2 - 4}}{2}\right)^m$$

and hence, the positive solutions of (2.2) have the form

$$x + y\sqrt{k^2 - 4} = 4\left(\frac{k + \sqrt{k^2 - 4}}{2}\right)^m$$
 with nonnegative integers m . (2.4)

The positive solutions of (2.3) can be expressed as follows.

Lemma 2.1. Let (z, y) be a positive solution of the Diophantine equation (2.3). Then, there exist a nonnegative integer n and a solution (z_0, y_0) of (2.3) such that

$$z + y\sqrt{k^2 - 1} = (z_0 + y_0\sqrt{k^2 - 1})(k + \sqrt{k^2 - 1})^n$$
(2.5)

with

$$|z_0| < \sqrt{\frac{3}{2}k^3}, \quad 0 < y_0 < \sqrt{2k}.$$
 (2.6)

Proof. We omit the proof, since it proceeds along the same lines as the proof of Lemma 1 in [6] or Lemma 3.1 in [15]. \Box

Lemma 2.2. If $v_m = w_n$ has a solution, then m is odd, n is even and $z_0 = \pm k$, $y_0 = 2$.

Proof. By (2.4) and (2.5), we may write $y = v_m = w_n$, where

$$v_0 = 0, v_1 = 2, v_{m+2} = kv_{m+1} - v_m$$
 (2.7)

and

$$w_0 = y_0, w_1 = ky_0 + z_0, w_{n+2} = 2kw_{n+1} - w_n.$$
 (2.8)

Hence,

$$(v_m \pmod{2k})_{m \ge 0} = (0, 2, 0, -2, 0, 2, \dots)$$

and

$$(w_n \pmod{2k})_{n \ge 0} = (y_0, ky_0 + z_0, -y_0, -ky_0 - z_0, y_0, \dots).$$

Suppose that $v_m \equiv 0 \pmod{2k}$. Then either $y_0 \equiv 0 \pmod{2k}$ or $ky_0 + z_0 \equiv 0 \pmod{2k}$. By (2.6), we must have $ky_0 + z_0 \equiv 0 \pmod{2k}$. Then, $z_0 \equiv 0 \pmod{2k}$ implies $y_0^2 \equiv 4 \pmod{2k}$. It follows from (2.6) that $y_0^2 = 4$, which implies that z_0 is even. This contradicts (2.3). Hence, m is odd and $v_m \equiv \pm 2 \pmod{2k}$. Then, either $y_0 \equiv \pm 2 \pmod{2k}$ or $ky_0 + z_0 \equiv \pm 2 \pmod{2k}$. If $ky_0 + z_0 \equiv \pm 2 \pmod{2k}$, then $z_0 \equiv \pm 2 \pmod{2k}$, say $z_0 = \alpha k \pm 2$, where α is an integer with $|\alpha| < \sqrt{3k/2} + 2/k$ by (2.6). Thus, $y_0^2 \equiv \pm 4\alpha k \pmod{k^2}$ and by (2.6) we have $k^2 - 4|\alpha|k$. If $k \ge 29$, then $y_0^2 = k^2 - 4|\alpha|k > 2k$, which contradicts (2.6). The only odd integers k with $3 \le k \le 27$ such that (z_0, y_0) with y_0 odd is a solution of (2.3) satisfying (2.6) are 7 and 19, and then $(z_0, y_0) = (17, 3)$ and (89, 5), respectively (note that y_0 must be odd, since y_0 and z_0 now have the same parity and z_0 is odd). However, in either case $z_0 \pm 2 \not\equiv 0 \pmod{k}$, that is, z_0 is not of the form $\alpha k \pm 2$. Therefore, n is even and $y_0 \equiv \pm 2 \pmod{2k}$. It follows from (2.6) that $y_0 = 2$ and $z_0 = \pm k$.

Now one can easily obtain the following three lemmas in the same ways as Lemmas 4.2 to 4.4 in [15].

Lemma 2.3. If $v_m = w_n$ has a solution with $n \ge 2$ in the case of $z_0 = k$ or with $n \ge 6$ in the case of $z_0 = -k$, then $n \ge 2k^2 - 6$.

Lemma 2.4. If $y = w_n$, then $\log y > (n-1) \log(1.942k)$.

Lemma 2.5. If $v_m = w_n$ has a solution with $n \neq 0$, then m > n. Moreover, if $k \geq 5$, then $m \leq 2n$; if k = 3, then $m \leq 3n$.

3 Application of a theorem of Bennett

Let $\theta_1 = \sqrt{1 - 4/k^2}$ and $\theta_2 = \sqrt{1 - 1/k^2}$. Then, a theorem ([2, Theorem 3.2]) of Bennett can be applied if $k^2 > \max\{4^9, 1^9\}$, that is, k > 512.

Theorem 3.1. If k > 512, then the numbers θ_1 and θ_2 satisfy

$$\max\left\{ \left| \theta_1 - \frac{p_1}{q} \right|, \left| \theta_2 - \frac{p_2}{q} \right| \right\} > (2680k^2)^{-1}q^{-\lambda}$$

for all integers p_1, p_2, q with q > 0, where

$$\lambda = 1 + \frac{\log(660k^2)}{\log(0.0116k^4)} < 2.$$

The following lemma is similar to Lemma 3.6 in [15].

Lemma 3.2. All positive solutions of the system of Diophantine equations (2.2) and (2.3) satisfy

$$\max\left\{ \left| \theta_1 - \frac{x}{ky} \right|, \left| \theta_2 - \frac{z}{ky} \right| \right\} < \frac{2.2}{y^2}.$$

Combining Theorem 3.1 and Lemma 3.2, one can bound $\log y$ above in terms of k.

Lemma 3.3. Suppose that $\{k^2 - 4, k^4, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple with k > 512. Then,

$$\log y < \frac{8\log(8.77k)\log(0.329k)}{\log(0.00419k)}.$$

Proof. Applying Theorem 3.1 with $p_1 = x$, $p_2 = z$, q = ky, we see from Lemma 3.2 that

$$(2680k^2)^{-1}(ky)^{-\lambda} < \frac{2.2}{y^2}.$$

Noting $\lambda < 2$, one can easily see that the desired inequality holds.

Proposition 3.4. Suppose that $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple with $d \neq 4k^4 - 8k^2$. Then, $k \leq 511$.

Proof. If n = 0, then d = 0, which cannot be an element in a $D(4k^2)$ -quadruple. If n = 2 with $z_0 = -k$, then $d = 4k^4 - 8k^2$. Denoting w_4 with $z_0 = -k$ by w_4^- , we easily see that

$$v_5 < w_4^- < v_7;$$

indeed, $w_4^- = 8k^4 - 12k^2 + 2$, $v_5 = 2k^4 - 6k^2 + 2$, $v_7 = 2k^6 - 10k^4 + 12k^2 - 2$. Since *m* is odd and *n* is even by Lemma 2.2, we may apply Lemma 2.3. Suppose that $k \ge 513$. Then, Lemmas 2.3, 2.4 and 3.3 together imply that

$$\frac{2k^2 - 7}{8} < \frac{\log(8.77k)\log(0.329k)}{\log(1.942k)\log(0.00419k)} =: f(k).$$
(3.1)

Since f(k) is a decreasing function for $k \ge 513$, we have $f(k) \le f(513) < 9$, which contradicts (3.1).

4 The reduction method

By the standard method (see, e.g., [15, Lemma 3.9]), the following estimate on the linear form in three logarithms is obtained.

Lemma 4.1. If $v_m = w_n$ has a solution with $n \neq 0$, then

$$0 < m \log \alpha_1 - n \log \alpha_2 + \log \alpha_3 < 10\alpha_2^{-m'}, \tag{4.1}$$

where

$$\alpha_1 = \frac{k + \sqrt{k^2 - 4}}{2}, \ \alpha_2 = k + \sqrt{k^2 - 1}, \ \alpha_3 = \frac{4\sqrt{k^2 - 1}}{\sqrt{k^2 - 4}(2\sqrt{k^2 - 1} \pm k)}$$

and m' = m if $k \ge 5$; m' = 2m/3 if k = 3.

The following theorem of Matveev gives an upper bound for m.

Theorem 4.2. ([18]) Let Λ be a linear form in logarithms of l multiplicatively independent totally real algebraic numbers $\alpha_1, \ldots, \alpha_l$ with rational integer coefficients b_1, \ldots, b_l ($b_l \neq 0$). Let $h(\alpha_j)$ denote the absolute logarithmic height of α_j for $1 \leq j \leq l$. Define the numbers D, A_j ($1 \leq j \leq l$) and B by $D = [\mathbb{Q}(\alpha_1, \ldots, \alpha_l) : \mathbb{Q}]$, $A_j = \max\{Dh(\alpha_j), |\log \alpha_j|\}, B = \max\{1, \max\{|b_j|A_j/A_l; 1 \leq j \leq l\}\}$. Then,

$$\log|\Lambda| > -C(l)C_0W_0D^2\Omega,$$

where

$$C(l) = \frac{8}{(l-1)!} (l+2)(2l+3)(4 e(l+1))^{l+1},$$

$$C_0 = \log(e^{4.4l+7} l^{5.5} D^2 \log(e D)),$$

$$W_0 = \log(1.5 e BD \log(e D)), \quad \Omega = A_1 \cdots A_l$$

Proposition 4.3. Suppose that $\{k^2 - 4, k^2, 4k^2 - 4, d\}$ is a $D(4k^2)$ -quadruple. Then $m < 10^{17}$.

Proof. We apply Theorem 4.2 with l = 3, D = 4, $b_1 = m$, $b_2 = -n$, $b_3 = 1$. We have $A_1 = 2 \log \alpha_1 < 2 \log k$ and $A_2 = 2 \log \alpha_2 < 2 \log(2k)$. Since the minimal polynomial of α_3 over \mathbb{Z} is

$$(k^{2}-4)^{2}(3k^{2}-4)^{2}X^{4}-32(k^{2}-1)(k^{2}-4)(5k^{2}-4)X^{2}+256(k^{2}-1)^{2}$$

up to a multiple of a constant, and $gcd((k^2 - 4)(3k^2 - 4), 16(k^2 - 1))$ divides 3, the leading coefficient a_0 of the minimal polynomial of α_3 over \mathbb{Z} satisfies

$$\frac{(k^2-4)^2(3k^2-4)^2}{9} \le a_0 \le (k^2-4)^2(3k^2-4)^2.$$

Since α_3 with the minus sign is less than 1.91 and α_3 with the plus sign is less than 1, we have

$$A_{3} = 4h(\alpha_{3}) < \log(1.91^{2}(k^{2} - 4)^{2}(3k^{2} - 4)^{2}) < 8\log(1.55k),$$

$$A_{3} > \log\left(\frac{(k^{2} - 4)^{2}(3k^{2} - 4)^{2}}{9}\right) > 8\log(0.829k).$$

Hence, we obtain the following:

$$\begin{split} B &< \max\left\{\frac{2m\log k}{8\log(0.829k)}, \frac{2n\log(2k)}{8\log(0.829k)}\right\} < \frac{m\log(2k)}{4\log(0.829k)} < 0.5m, \\ C(3) &= \frac{8}{2!} \cdot 5 \cdot 9(16\,\mathrm{e})^4 < 6.45 \cdot 10^8, \\ C_0 &= \log\left(\mathrm{e}^{4.4\cdot 3+7}\cdot 3^{5.5}\cdot 16\log(4\,\mathrm{e})\right) < 29.9, \\ W_0 &= \log(1.5\,\mathrm{e}\,B\cdot 4\log(4\,\mathrm{e})) < \log(20m), \\ \Omega &= A_1A_2A_3 < 32\log(k)\log(2k)\log(1.55k) < 73.1(\log k)^3. \end{split}$$

It follows from Theorem 4.2 that

$$\log |m \log \alpha_1 - n \log \alpha_2 + \log \alpha_3| > -2.3 \cdot 10^{13} \log(20m) (\log k)^3.$$

Assume that $m \ge 10$. Since $\log(10\alpha_1^{-m'}) < -m'\log k$, we see from Lemma 4.1 that

$$2.3 \cdot 10^{13} (\log k)^2 > \frac{m'}{\log(20m)} =: F(m).$$

By Proposition 3.4, we have $F(m) < 2.3 \cdot 10^{13} (\log(511))^2 < 9 \cdot 10^{14}$. Since F(m) is increasing and $F(10^{17}) > 10^{15}$, we obtain $m < 10^{17}$.

Proof of Theorem 1.3. Dividing (4.1) by $\log \alpha_2$, we have

$$0 < m\kappa - n + \mu < AB^{-m},\tag{4.2}$$

where

$$\kappa = \frac{\log \alpha_1}{\log \alpha_2}, \ \mu = \frac{\log \alpha_3}{\log \alpha_2}, \ A = \frac{10}{\log \alpha_2}, \ B = \alpha_2 \ (k \ge 5) \text{ or } \alpha_2^{2/3} \ (k = 3).$$

Lemma 4.4. ([9, Lemma 5 a)]) Let M be a positive integer and p/q a convergent of the continued fraction expansion of κ such that q > 6M. Put $\epsilon = ||\mu q|| - M||\kappa q||$, where $|| \cdot ||$ denotes the distance from the nearest integer. If $\epsilon > 0$, then the inequality (4.2) has no solution in the range

$$\frac{\log(Aq/\epsilon)}{\log B} \le m \le M.$$

As seen at the beginning in the proof of Proposition 3.4, we may assume that $n \ge 4$ for $z_0 = k$ and $n \ge 6$ for $z_0 = -k$. We can thus use Lemma 2.3, which implies $n \ge 2k^2 - 6$. We apply Lemma 4.4 with $M = 10^{17}$ for odd k with $3 \le k \le 511$ and for each sign of α_3 . For $5 \le k \le 511$, the second convergent is needed in 2 cases and the third convergent is needed in two cases. In any case, the first step of reduction gives $m \le 21$, which contradicts Lemma 2.3 with $k \ge 5$. For k = 3, the first step of reduction gives $m \le 40$ and the second step gives $m \le 10$ (the second convergent is needed only in the first step for the minus sign of α_3). This contradicts Lemma 2.3 with k = 3, and completes the proof of Theorem 1.3.

References

- [1] Baker, A., H. Davenport, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$. Quart. J. Math. Oxford Ser. Vol. 20, 1969, 129–137.
- [2] Bennett, M. A. On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., Vol. 498, 1998, 173–199.
- [3] Brown, E. Sets in which xy + k is a always a square. *Math. Comp.*, Vol. 45, 1985, 613–620.
- [4] Dujella, A. Generalization of a problem of Diophantus. Acta Arith., Vol. 65, 1993, 15–27.
- [5] Dujella, A. On the exceptional set in the problem of Diophantus and Davenport. *Applications of Fibonacci Numbers*, Vol. 7, 1998, 69–76.
- [6] Dujella, A. An absolute bound for the size of Diophantine *m*-tuples. J. Number Theory, Vol. 89, 2001, 126–150.
- [7] Dujella, A. There are only finitely many Diophantine quintuples. J. Reine Angew. Math., Vol. 566, 2004, 183–214.

- [8] Dujella, A., A. Filipin, C. Fuchs. Effective solution of the D(-1)-quadruple conjecture. *Acta Arith.*, Vol. 128, 2007, 319–338.
- [9] Dujella, A., A. Pethő, A generalization of a theorem of Baker and Davenport. *Quart. J. Math. Oxford Ser.*, Vol. 49, September 1998, No. 195, 291–306.
- [10] Dujella, A., A. M. S. Ramasamy. Fibonacci numbers and sets with the property D(4). Bull. Belg. Math. Soc. Simon Stevin, Vol. 12, 2005, 401–412.
- [11] Filipin, A. Extensions of some parametric families of D(16)-triples. Int. J. Math. Math. Sci., 2007, Article ID 63739, 12 pages.
- [12] Filipin, A., B. He, A. Togbé, On the D(4)-triple $\{F_{2k}, F_{2k+6}, 4F_{2k+4}\}$. Fibonacci Quart., Vol. 48, 2010, 219–227.
- [13] Fujita, Y. The non-extensibility of D(4k)-triples $\{1, 4k(k-1), 4k^2 + 1\}$ with |k| prime. *Glas. Mat. Ser.*, Vol. III 41, 2006, 205–216.
- [14] Fujita, Y. The extensibility of Diophantine pairs $\{k 1, k + 1\}$. J. Number Theory, Vol. 128, 2008, 322–353.
- [15] Fujita, Y. Extensions of the $D(\mp k^2)$ -triples $\{k^2, k^2 \pm 1, 4k^2 \pm 1\}$. *Period. Math. Hungarica*, Vol. 59, 2009, 81–98.
- [16] Gupta, H., K. Singh, On k-triad sequences. Internat. J. Math. Math. Sci., Vol. 8, 1985, 799-804.
- [17] He, B., A. Togbé. On a family of Diophantine triples $\{k, A^2k + 2A, (A+1)^2k + 2(A+1)\}$ with two parameters. *Acta Math. Hungar.*, Vol. 124, 2009, 99–113.
- [18] Matveev, E. M. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. *Izv. Math.*, Vol. 64, 2000, 1217–1269.
- [19] Mohanty, S. P., A. M. S. Ramasamy, On P_{r,k} sequences. Fibonacci Quart., Vol. 23, 1985, 36–44.
- [20] Mollin, R. A. Quadratics. CRC Press, 1996.
- [21] Rickert, J. H. Simultaneous rational approximation and related Diophantine equations. *Math. Proc. Cambridge Philos. Soc.*, Vol. 113, 1993, 461–472.