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Abstract: Let n be a nonzero integer. A set of m distinct positive integers is called a D(n)-m-
tuple if the product of any two of them increased by n is a perfect square. Let k be an integer
greater than two. In this paper, we show that if {k2 − 4, k2, 4k2 − 4, d} is a D(4k2)-quadruple,
then d = 4k4 − 8k2.
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1 Introduction

Let n be a nonzero integer. A set of m distinct positive integers {a1, . . . , am} is called a Diophan-
tine m-tuple with the property D(n) or a D(n)-m-tuple, if aiaj + n is a perfect square for each
i, j with 1 ≤ i < j ≤ m.

The first example of a D(1)-quadruple was found by Fermat, which was the set {1, 3, 8, 120}.
Baker and Davenport ([1]) showed that {1, 3, 8, 120} cannot be extended to a D(1)-quintuple.
There are several generalizations of this result (see [17] and its references); for example, {k −
1, k+1} cannot be extended to aD(1)-quintuple ([14]). A folklore conjecture says that there does
not exist aD(1)-quintuple, and Dujella ([7]) showed that there does not exist aD(1)-sextuple and
that there exist only finitely many D(1)-quintuples.

The n = 4 case can be considered in the same way as the n = 1 case (see [12] and its
references) and it is conjectured that there does not exist a D(4)-quintuple. The following is a
stronger version of this conjecture.

Conjecture 1.1. ([10, Conjecture 1]) If {a, b, c, d} is a D(4)-quadruple with a < b < c < d, then
d = a+ b+ c+ (abc+ rst)/2, where r, s, t are positive integers defined by ab+ 4 = r2, ac+ 4 =

s2, bc+ 4 = t2.
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In general, if n ≡ 2 (mod 4), then there does not exist a D(n)-quadruple ([3, 16, 19]).
Dujella ([4]) showed that if n 6≡ 2 (mod 4) and if n 6∈ S := {−4,−3,−1, 3, 5, 8, 12, 20}, then
there exists at least one D(n)-quadruple, and conjectured the following.

Conjecture 1.2. ([5]) There does not exist a D(n)-quadruple for n ∈ S.

There are several results supporting Conjecture 1.2 for the n = −1 case (see [8] and its
references), and the validity of Conjecture 1.2 for n = −1 implies the one for n = −4 ([4,
Remark 3]). For n 6∈ {±1,±4}, it is not easy to show either nonexistence or uniqueness of
extension of a D(n)-triple, unless an argument using congruences modulo a power of 2 works.
This is why we have to know the fundamental solutions of at least two of the Pell equations

ay2 − bx2 = 1, az2 − cx2 = 1, bz2 − cy2 = 1.

The first author ([13]) showed that the D(4k)-triple {1, 4k(k−1), 4k2 + 1} with |k| prime cannot
be extended to a D(4k)-quadruple. Moreover, he ([15]) proved that the D(∓k2)-triple {k2, k2 ±
1, 4k2 ± 1} cannot be extended to a D(∓k2)-quintuple. In either case, ab and ac are of Richaud-
Degert type ([20]), which gives the fundamental solutions of the corresponding Pell equations.
Furthermore, the Padé approximation method (a theorem of Bennett ([2]) or of Rickert ([21]))
can work for the D(∓k2)-triple. Since D(±4)-tuples have similar properties to D(±1)-tuples as
mentioned above, it is natural to ask whether the same is valid for D(±4k2)-tuples and D(±k2)-
tuples. This leads us to consider the D(∓4k2)-triple {k2, k2 ± 4, 4k2 ± 4}.

Suppose that {k2, k2 ± 4, 4k2 ± 4, d} is a D(∓4k2)-quadruple. If k is even, say k = 2k′,
this is equivalent to that {(k′)2, (k′)2 ± 1, 4(k′)2 ± 1, d′} is a D(∓(k′)2)-quadruple with some
integer d′. It follows from Theorems 1.4 and 1.5 in [15] that we may assume that k is odd. Then,
since −4k2 ≡ 12 (mod 16), the set {k2, k2 + 4, 4k2 + 4, d} cannot be a D(−4k2)-quadruple by
Remark 3 in [4], stating that if {a1, a2, a3, a4} is a D(16l + 12)-quadruple with some integer l,
then every ai is even. Therefore, the D(4k2)-quadruple {k2−4, k2, 4k2−4, d} with k odd is only
to be considered. Our theorem in this paper is the following.

Theorem 1.3. Let k be an integer greater than two. If {k2 − 4, k2, 4k2 − 4, d} is a D(4k2)-
quadruple, then d = 4k4 − 8k2.

Since Theorem 1.3 with k even follows immediately from Theorem 1.4 in [15], we will as-
sume that k is odd throughout this paper.

The quadruple in Theorem 1.3 can be interpreted as the quadruple {k2 − 4, k2, x1,0, x2,0} in
[4], where xn,m and yn,m are double sequences satisfying xn,0 = (y2n,0 − 4k2)/(k2 − 4) and
y0,0 = 2k, y1,0 = 2k2 − 4, yn+1,0 = kyn,0 − yn−1,0. Another interpretation of the quadruple is
to regard it as an analogue of the quadruple in Conjecture 1.1. More generally, if {a, k2b, c} is a
D(4k2)-triple, then {a, k2b, c, d} is a D(4k2)-quadruple with d = a + k2b + c + (abc + rst)/2,
where r, s, t are positive integers defined by ab + 4 = r2, ac + 4k2 = s2, bc + 4 = t2. Thus,
Theorem 1.3 gives an example for which an analogue of Conjecture 1.1 holds. Note that this
analogy does not hold in general. Filipin ([11, Theorem 3.10]) showed that if {1, 20, 33, d} is a
D(16)-quadruple, then d = 105 or 273.

The organization of this paper is as follows. In Section 1, we transform the problem into
a system of Diophantine equations, whose solution can be expressed as the intersection of two

43



recurrence sequences. The congruence method due to Dujella then gives a lower bound for the
number of terms. In Section 3, the lower bound and the theorem of Bennett together yield k ≤
511. Finally, in Section 4 using the reduction method ([1, 9]) we arrive at a contradiction for each
k with k ≤ 511.

2 A lower bound for solutions

Let k be an odd integer greater than two. Suppose that {k2 − 4, k2, 4k2 − 4, d} is a D(4k2)-
quadruple. Then, there exist positive integers x, y′, z′ such that

(k2 − 4)d+ 4k2 = x2, k2d+ 4k2 = (y′)2, (4k2 − 4)d+ 4k2 = (z′)2. (2.1)

Clearly we have y′ ≡ 0 (mod k) and z′ ≡ 0 (mod 2), which enable us to write y′ = ky

and z′ = 2z with positive integers y and z. Eliminating d from (2.1), we obtain the system
of Diophantine equations

x2 − (k2 − 4)y2 = 16, (2.2)

z2 − (k2 − 1)y2 = 4− 3k2. (2.3)

Since k is odd, k2−4 ≡ 5 (mod 8). Hence, (2.2) implies that both x and y are even, say x = 2X

and y = 2Y . Then, (2.2) can be rewritten as X2− (k2− 4)Y 2 = 4. The positive solutions of this
Pell equation have the form

X + Y
√
k2 − 4

2
=

(
k +
√
k2 − 4

2

)m
and hence, the positive solutions of (2.2) have the form

x+ y
√
k2 − 4 = 4

(
k +
√
k2 − 4

2

)m
with nonnegative integers m. (2.4)

The positive solutions of (2.3) can be expressed as follows.

Lemma 2.1. Let (z, y) be a positive solution of the Diophantine equation (2.3). Then, there exist
a nonnegative integer n and a solution (z0, y0) of (2.3) such that

z + y
√
k2 − 1 = (z0 + y0

√
k2 − 1)(k +

√
k2 − 1)n (2.5)

with

|z0| <
√

3

2
k3, 0 < y0 <

√
2k. (2.6)

Proof. We omit the proof, since it proceeds along the same lines as the proof of Lemma 1 in [6]
or Lemma 3.1 in [15].

Lemma 2.2. If vm = wn has a solution, then m is odd, n is even and z0 = ±k, y0 = 2.
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Proof. By (2.4) and (2.5), we may write y = vm = wn, where

v0 = 0, v1 = 2, vm+2 = kvm+1 − vm (2.7)

and

w0 = y0, w1 = ky0 + z0, wn+2 = 2kwn+1 − wn. (2.8)

Hence,
(vm (mod 2k))m≥0 = (0, 2, 0,−2, 0, 2, . . . )

and
(wn (mod 2k))n≥0 = (y0, ky0 + z0,−y0,−ky0 − z0, y0, . . . ).

Suppose that vm ≡ 0 (mod 2k). Then either y0 ≡ 0 (mod 2k) or ky0 + z0 ≡ 0 (mod 2k). By
(2.6), we must have ky0 + z0 ≡ 0 (mod 2k). Then, z0 ≡ 0 (mod k) implies y20 ≡ 4 (mod k2).
It follows from (2.6) that y20 = 4, which implies that z0 is even. This contradicts (2.3). Hence, m
is odd and vm ≡ ±2 (mod 2k). Then, either y0 ≡ ±2 (mod 2k) or ky0 + z0 ≡ ±2 (mod 2k).
If ky0 + z0 ≡ ±2 (mod 2k), then z0 ≡ ±2 (mod k), say z0 = αk ± 2, where α is an integer
with |α| <

√
3k/2+2/k by (2.6). Thus, y20 ≡ ±4αk (mod k2) and by (2.6) we have k2−4|α|k.

If k ≥ 29, then y20 = k2 − 4|α|k > 2k, which contradicts (2.6). The only odd integers k with
3 ≤ k ≤ 27 such that (z0, y0) with y0 odd is a solution of (2.3) satisfying (2.6) are 7 and 19, and
then (z0, y0) = (17, 3) and (89, 5), respectively (note that y0 must be odd, since y0 and z0 now
have the same parity and z0 is odd). However, in either case z0 ± 2 6≡ 0 (mod k), that is, z0 is
not of the form αk ± 2. Therefore, n is even and y0 ≡ ±2 (mod 2k). It follows from (2.6) that
y0 = 2 and z0 = ±k.

Now one can easily obtain the following three lemmas in the same ways as Lemmas 4.2 to
4.4 in [15].

Lemma 2.3. If vm = wn has a solution with n ≥ 2 in the case of z0 = k or with n ≥ 6 in the
case of z0 = −k, then n ≥ 2k2 − 6.

Lemma 2.4. If y = wn, then log y > (n− 1) log(1.942k).

Lemma 2.5. If vm = wn has a solution with n 6= 0, then m > n. Moreover, if k ≥ 5, then
m ≤ 2n; if k = 3, then m ≤ 3n.

3 Application of a theorem of Bennett

Let θ1 =
√

1− 4/k2 and θ2 =
√

1− 1/k2. Then, a theorem ([2, Theorem 3.2]) of Bennett can
be applied if k2 > max{49, 19}, that is, k > 512.

Theorem 3.1. If k > 512, then the numbers θ1 and θ2 satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} > (2680k2)−1q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(660k2)

log(0.0116k4)
< 2.
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The following lemma is similar to Lemma 3.6 in [15].

Lemma 3.2. All positive solutions of the system of Diophantine equations (2.2) and (2.3) satisfy

max

{∣∣∣∣θ1 − x

ky

∣∣∣∣ , ∣∣∣∣θ2 − z

ky

∣∣∣∣} <
2.2

y2
.

Combining Theorem 3.1 and Lemma 3.2, one can bound log y above in terms of k.

Lemma 3.3. Suppose that {k2 − 4, k4, 4k2 − 4, d} is a D(4k2)-quadruple with k > 512. Then,

log y <
8 log(8.77k) log(0.329k)

log(0.00419k)
.

Proof. Applying Theorem 3.1 with p1 = x, p2 = z, q = ky, we see from Lemma 3.2 that

(2680k2)−1(ky)−λ <
2.2

y2
.

Noting λ < 2, one can easily see that the desired inequality holds.

Proposition 3.4. Suppose that {k2−4, k2, 4k2−4, d} is aD(4k2)-quadruple with d 6= 4k4−8k2.
Then, k ≤ 511.

Proof. If n = 0, then d = 0, which cannot be an element in a D(4k2)-quadruple. If n = 2 with
z0 = −k, then d = 4k4 − 8k2. Denoting w4 with z0 = −k by w−4 , we easily see that

v5 < w−4 < v7;

indeed, w−4 = 8k4− 12k2 + 2, v5 = 2k4− 6k2 + 2, v7 = 2k6− 10k4 + 12k2− 2. Since m is odd
and n is even by Lemma 2.2, we may apply Lemma 2.3. Suppose that k ≥ 513. Then, Lemmas
2.3, 2.4 and 3.3 together imply that

2k2 − 7

8
<

log(8.77k) log(0.329k)

log(1.942k) log(0.00419k)
=: f(k). (3.1)

Since f(k) is a decreasing function for k ≥ 513, we have f(k) ≤ f(513) < 9, which contradicts
(3.1).

4 The reduction method

By the standard method (see, e.g., [15, Lemma 3.9]), the following estimate on the linear form in
three logarithms is obtained.

Lemma 4.1. If vm = wn has a solution with n 6= 0, then

0 < m logα1 − n logα2 + logα3 < 10α−m
′

2 , (4.1)

where

α1 =
k +
√
k2 − 4

2
, α2 = k +

√
k2 − 1, α3 =

4
√
k2 − 1√

k2 − 4(2
√
k2 − 1± k)

,

and m′ = m if k ≥ 5; m′ = 2m/3 if k = 3.
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The following theorem of Matveev gives an upper bound for m.

Theorem 4.2. ([18]) Let Λ be a linear form in logarithms of l multiplicatively independent
totally real algebraic numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl (bl 6= 0).
Let h(αj) denote the absolute logarithmic height of αj for 1 ≤ j ≤ l. Define the numbers D,
Aj (1 ≤ j ≤ l) and B by D = [Q(α1, . . . , αl) : Q], Aj = max{Dh(αj), | logαj|}, B =

max {1,max {|bj|Aj/Al; 1 ≤ j ≤ l}}. Then,

log |Λ| > −C(l)C0W0D
2Ω,

where

C(l) =
8

(l − 1)!
(l + 2)(2l + 3)(4 e(l + 1))l+1,

C0 = log(e4.4l+7 l5.5D2 log(eD)),

W0 = log(1.5 eBD log(eD)), Ω = A1 · · ·Al.

Proposition 4.3. Suppose that {k2 − 4, k2, 4k2 − 4, d} is a D(4k2)-quadruple. Then m < 1017.

Proof. We apply Theorem 4.2 with l = 3, D = 4, b1 = m, b2 = −n, b3 = 1. We have
A1 = 2 logα1 < 2 log k and A2 = 2 logα2 < 2 log(2k). Since the minimal polynomial of α3

over Z is

(k2 − 4)2(3k2 − 4)2X4 − 32(k2 − 1)(k2 − 4)(5k2 − 4)X2 + 256(k2 − 1)2

up to a multiple of a constant, and gcd((k2 − 4)(3k2 − 4), 16(k2 − 1)) divides 3, the leading
coefficient a0 of the minimal polynomial of α3 over Z satisfies

(k2 − 4)2(3k2 − 4)2

9
≤ a0 ≤ (k2 − 4)2(3k2 − 4)2.

Since α3 with the minus sign is less than 1.91 and α3 with the plus sign is less than 1, we have

A3 = 4h(α3) < log(1.912(k2 − 4)2(3k2 − 4)2) < 8 log(1.55k),

A3 > log

(
(k2 − 4)2(3k2 − 4)2

9

)
> 8 log(0.829k).

Hence, we obtain the following:

B < max

{
2m log k

8 log(0.829k)
,

2n log(2k)

8 log(0.829k)

}
<

m log(2k)

4 log(0.829k)
< 0.5m,

C(3) =
8

2!
· 5 · 9(16 e)4 < 6.45 · 108,

C0 = log
(
e4.4·3+7 ·35.5 · 16 log(4 e)

)
< 29.9,

W0 = log(1.5 eB · 4 log(4 e)) < log(20m),

Ω = A1A2A3 < 32 log(k) log(2k) log(1.55k) < 73.1(log k)3.

It follows from Theorem 4.2 that

log |m logα1 − n logα2 + logα3| > −2.3 · 1013 log(20m)(log k)3.
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Assume that m ≥ 10. Since log(10α−m
′

1 ) < −m′ log k, we see from Lemma 4.1 that

2.3 · 1013(log k)2 >
m′

log(20m)
=: F (m).

By Proposition 3.4, we have F (m) < 2.3 · 1013(log(511))2 < 9 · 1014. Since F (m) is increasing
and F (1017) > 1015, we obtain m < 1017.

Proof of Theorem 1.3. Dividing (4.1) by logα2, we have

0 < mκ− n+ µ < AB−m, (4.2)

where
κ =

logα1

logα2

, µ =
logα3

logα2

, A =
10

logα2

, B = α2 (k ≥ 5) or α2/3
2 (k = 3).

Lemma 4.4. ([9, Lemma 5 a)]) LetM be a positive integer and p/q a convergent of the continued
fraction expansion of κ such that q > 6M . Put ε = ||µq|| −M ||κq||, where || · || denotes the
distance from the nearest integer. If ε > 0, then the inequality (4.2) has no solution in the range

log(Aq/ε)

logB
≤ m ≤M.

As seen at the beginning in the proof of Proposition 3.4, we may assume that n ≥ 4 for
z0 = k and n ≥ 6 for z0 = −k. We can thus use Lemma 2.3, which implies n ≥ 2k2 − 6. We
apply Lemma 4.4 with M = 1017 for odd k with 3 ≤ k ≤ 511 and for each sign of α3. For
5 ≤ k ≤ 511, the second convergent is needed in 2 cases and the third convergent is needed in
two cases. In any case, the first step of reduction gives m ≤ 21, which contradicts Lemma 2.3
with k ≥ 5. For k = 3, the first step of reduction gives m ≤ 40 and the second step gives m ≤ 10

(the second convergent is needed only in the first step for the minus sign of α3). This contradicts
Lemma 2.3 with k = 3, and completes the proof of Theorem 1.3.
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[12] Filipin, A., B. He, A. Togbé, On the D(4)-triple {F2k, F2k+6, 4F2k+4}. Fibonacci Quart., Vol. 48,
2010, 219–227.

[13] Fujita, Y. The non-extensibility of D(4k)-triples {1, 4k(k − 1), 4k2 + 1} with |k| prime. Glas. Mat.
Ser., Vol. III 41, 2006, 205–216.

[14] Fujita, Y. The extensibility of Diophantine pairs {k − 1, k + 1}. J. Number Theory, Vol. 128, 2008,
322–353.

[15] Fujita, Y. Extensions of the D(∓k2)-triples {k2, k2± 1, 4k2± 1}. Period. Math. Hungarica, Vol. 59,
2009, 81–98.

[16] Gupta, H., K. Singh, On k-triad sequences. Internat. J. Math. Math. Sci., Vol. 8, 1985, 799–804.
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