Uniqueness of the extension of the $D\left(4 k^{2}\right)$-triple

$$
\left\{k^{2}-4, k^{2}, 4 k^{2}-4\right\}
$$

Yasutsugu Fujita ${ }^{1}$ and Alain Togbé ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Industrial Technology
Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp
${ }^{2}$ Mathematics Department, Purdue University North Central 1401 S, U.S. 421, Westville, IN 46391, USA
e-mail: atogbe@pnc.edu

Abstract

Let n be a nonzero integer. A set of m distinct positive integers is called a $D(n)-m$ tuple if the product of any two of them increased by n is a perfect square. Let k be an integer greater than two. In this paper, we show that if $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$-quadruple, then $d=4 k^{4}-8 k^{2}$.

Keywords: Diophantine tuples, Simultaneous Diophantine equations.
AMS Classification: 11D09, 11J68

1 Introduction

Let n be a nonzero integer. A set of m distinct positive integers $\left\{a_{1}, \ldots, a_{m}\right\}$ is called a Diophantine m-tuple with the property $D(n)$ or a $D(n)$-m-tuple, if $a_{i} a_{j}+n$ is a perfect square for each i, j with $1 \leq i<j \leq m$.

The first example of a $D(1)$-quadruple was found by Fermat, which was the set $\{1,3,8,120\}$. Baker and Davenport ([1]) showed that $\{1,3,8,120\}$ cannot be extended to a $D(1)$-quintuple. There are several generalizations of this result (see [17] and its references); for example, $\{k-$ $1, k+1\}$ cannot be extended to a $D(1)$-quintuple ([14]). A folklore conjecture says that there does not exist a $D(1)$-quintuple, and Dujella ([7]) showed that there does not exist a $D(1)$-sextuple and that there exist only finitely many $D(1)$-quintuples.

The $n=4$ case can be considered in the same way as the $n=1$ case (see [12] and its references) and it is conjectured that there does not exist a $D(4)$-quintuple. The following is a stronger version of this conjecture.

Conjecture 1.1. ([10, Conjecture 1]) If $\{a, b, c, d\}$ is a D(4)-quadruple with $a<b<c<d$, then $d=a+b+c+(a b c+r s t) / 2$, where r, s, t are positive integers defined by $a b+4=r^{2}, a c+4=$ $s^{2}, b c+4=t^{2}$.

In general, if $n \equiv 2(\bmod 4)$, then there does not exist a $D(n)$-quadruple ($[3,16,19]$). Dujella ([4]) showed that if $n \not \equiv 2(\bmod 4)$ and if $n \notin S:=\{-4,-3,-1,3,5,8,12,20\}$, then there exists at least one $D(n)$-quadruple, and conjectured the following.

Conjecture 1.2. ([5]) There does not exist a $D(n)$-quadruple for $n \in S$.
There are several results supporting Conjecture 1.2 for the $n=-1$ case (see [8] and its references), and the validity of Conjecture 1.2 for $n=-1$ implies the one for $n=-4$ ([4, Remark 3]). For $n \notin\{ \pm 1, \pm 4\}$, it is not easy to show either nonexistence or uniqueness of extension of a $D(n)$-triple, unless an argument using congruences modulo a power of 2 works. This is why we have to know the fundamental solutions of at least two of the Pell equations

$$
a y^{2}-b x^{2}=1, a z^{2}-c x^{2}=1, b z^{2}-c y^{2}=1 .
$$

The first author ([13]) showed that the $D(4 k)$-triple $\left\{1,4 k(k-1), 4 k^{2}+1\right\}$ with $|k|$ prime cannot be extended to a $D(4 k)$-quadruple. Moreover, he ([15]) proved that the $D\left(\mp k^{2}\right)$-triple $\left\{k^{2}, k^{2} \pm\right.$ $\left.1,4 k^{2} \pm 1\right\}$ cannot be extended to a $D\left(\mp k^{2}\right)$-quintuple. In either case, $a b$ and $a c$ are of RichaudDegert type ([20]), which gives the fundamental solutions of the corresponding Pell equations. Furthermore, the Padé approximation method (a theorem of Bennett ([2]) or of Rickert ([21])) can work for the $D\left(\mp k^{2}\right)$-triple. Since $D(\pm 4)$-tuples have similar properties to $D(\pm 1)$-tuples as mentioned above, it is natural to ask whether the same is valid for $D\left(\pm 4 k^{2}\right)$-tuples and $D\left(\pm k^{2}\right)$ tuples. This leads us to consider the $D\left(\mp 4 k^{2}\right)$-triple $\left\{k^{2}, k^{2} \pm 4,4 k^{2} \pm 4\right\}$.

Suppose that $\left\{k^{2}, k^{2} \pm 4,4 k^{2} \pm 4, d\right\}$ is a $D\left(\mp 4 k^{2}\right)$-quadruple. If k is even, say $k=2 k^{\prime}$, this is equivalent to that $\left\{\left(k^{\prime}\right)^{2},\left(k^{\prime}\right)^{2} \pm 1,4\left(k^{\prime}\right)^{2} \pm 1, d^{\prime}\right\}$ is a $D\left(\mp\left(k^{\prime}\right)^{2}\right)$-quadruple with some integer d^{\prime}. It follows from Theorems 1.4 and 1.5 in [15] that we may assume that k is odd. Then, since $-4 k^{2} \equiv 12(\bmod 16)$, the set $\left\{k^{2}, k^{2}+4,4 k^{2}+4, d\right\}$ cannot be a $D\left(-4 k^{2}\right)$-quadruple by Remark 3 in [4], stating that if $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a $D(16 l+12)$-quadruple with some integer l, then every a_{i} is even. Therefore, the $D\left(4 k^{2}\right)$-quadruple $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ with k odd is only to be considered. Our theorem in this paper is the following.

Theorem 1.3. Let k be an integer greater than two. If $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$ quadruple, then $d=4 k^{4}-8 k^{2}$.

Since Theorem 1.3 with k even follows immediately from Theorem 1.4 in [15], we will assume that k is odd throughout this paper.

The quadruple in Theorem 1.3 can be interpreted as the quadruple $\left\{k^{2}-4, k^{2}, x_{1,0}, x_{2,0}\right\}$ in [4], where $x_{n, m}$ and $y_{n, m}$ are double sequences satisfying $x_{n, 0}=\left(y_{n, 0}^{2}-4 k^{2}\right) /\left(k^{2}-4\right)$ and $y_{0,0}=2 k, y_{1,0}=2 k^{2}-4, y_{n+1,0}=k y_{n, 0}-y_{n-1,0}$. Another interpretation of the quadruple is to regard it as an analogue of the quadruple in Conjecture 1.1. More generally, if $\left\{a, k^{2} b, c\right\}$ is a $D\left(4 k^{2}\right)$-triple, then $\left\{a, k^{2} b, c, d\right\}$ is a $D\left(4 k^{2}\right)$-quadruple with $d=a+k^{2} b+c+(a b c+r s t) / 2$, where r, s, t are positive integers defined by $a b+4=r^{2}, a c+4 k^{2}=s^{2}, b c+4=t^{2}$. Thus, Theorem 1.3 gives an example for which an analogue of Conjecture 1.1 holds. Note that this analogy does not hold in general. Filipin ([11, Theorem 3.10]) showed that if $\{1,20,33, d\}$ is a $D(16)$-quadruple, then $d=105$ or 273.

The organization of this paper is as follows. In Section 1, we transform the problem into a system of Diophantine equations, whose solution can be expressed as the intersection of two
recurrence sequences. The congruence method due to Dujella then gives a lower bound for the number of terms. In Section 3, the lower bound and the theorem of Bennett together yield $k \leq$ 511. Finally, in Section 4 using the reduction method ($[1,9]$) we arrive at a contradiction for each k with $k \leq 511$.

2 A lower bound for solutions

Let k be an odd integer greater than two. Suppose that $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$ quadruple. Then, there exist positive integers $x, y^{\prime}, z^{\prime}$ such that

$$
\begin{equation*}
\left(k^{2}-4\right) d+4 k^{2}=x^{2}, k^{2} d+4 k^{2}=\left(y^{\prime}\right)^{2},\left(4 k^{2}-4\right) d+4 k^{2}=\left(z^{\prime}\right)^{2} . \tag{2.1}
\end{equation*}
$$

Clearly we have $y^{\prime} \equiv 0(\bmod k)$ and $z^{\prime} \equiv 0(\bmod 2)$, which enable us to write $y^{\prime}=k y$ and $z^{\prime}=2 z$ with positive integers y and z. Eliminating d from (2.1), we obtain the system of Diophantine equations

$$
\begin{align*}
& x^{2}-\left(k^{2}-4\right) y^{2}=16 \tag{2.2}\\
& z^{2}-\left(k^{2}-1\right) y^{2}=4-3 k^{2} . \tag{2.3}
\end{align*}
$$

Since k is odd, $k^{2}-4 \equiv 5(\bmod 8)$. Hence, (2.2) implies that both x and y are even, say $x=2 X$ and $y=2 Y$. Then, (2.2) can be rewritten as $X^{2}-\left(k^{2}-4\right) Y^{2}=4$. The positive solutions of this Pell equation have the form

$$
\frac{X+Y \sqrt{k^{2}-4}}{2}=\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m}
$$

and hence, the positive solutions of (2.2) have the form

$$
\begin{equation*}
x+y \sqrt{k^{2}-4}=4\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m} \quad \text { with nonnegative integers } m \tag{2.4}
\end{equation*}
$$

The positive solutions of (2.3) can be expressed as follows.
Lemma 2.1. Let (z, y) be a positive solution of the Diophantine equation (2.3). Then, there exist a nonnegative integer n and a solution $\left(z_{0}, y_{0}\right)$ of (2.3) such that

$$
\begin{equation*}
z+y \sqrt{k^{2}-1}=\left(z_{0}+y_{0} \sqrt{k^{2}-1}\right)\left(k+\sqrt{k^{2}-1}\right)^{n} \tag{2.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|z_{0}\right|<\sqrt{\frac{3}{2} k^{3}}, \quad 0<y_{0}<\sqrt{2 k} \tag{2.6}
\end{equation*}
$$

Proof. We omit the proof, since it proceeds along the same lines as the proof of Lemma 1 in [6] or Lemma 3.1 in [15].

Lemma 2.2. If $v_{m}=w_{n}$ has a solution, then m is odd, n is even and $z_{0}= \pm k, y_{0}=2$.

Proof. By (2.4) and (2.5), we may write $y=v_{m}=w_{n}$, where

$$
\begin{equation*}
v_{0}=0, v_{1}=2, v_{m+2}=k v_{m+1}-v_{m} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{0}=y_{0}, w_{1}=k y_{0}+z_{0}, w_{n+2}=2 k w_{n+1}-w_{n} . \tag{2.8}
\end{equation*}
$$

Hence,

$$
\left(v_{m} \quad(\bmod 2 k)\right)_{m \geq 0}=(0,2,0,-2,0,2, \ldots)
$$

and

$$
\left(w_{n} \quad(\bmod 2 k)\right)_{n \geq 0}=\left(y_{0}, k y_{0}+z_{0},-y_{0},-k y_{0}-z_{0}, y_{0}, \ldots\right) .
$$

Suppose that $v_{m} \equiv 0(\bmod 2 k)$. Then either $y_{0} \equiv 0(\bmod 2 k)$ or $k y_{0}+z_{0} \equiv 0(\bmod 2 k)$. By (2.6), we must have $k y_{0}+z_{0} \equiv 0(\bmod 2 k)$. Then, $z_{0} \equiv 0(\bmod k)$ implies $y_{0}^{2} \equiv 4\left(\bmod k^{2}\right)$. It follows from (2.6) that $y_{0}^{2}=4$, which implies that z_{0} is even. This contradicts (2.3). Hence, m is odd and $v_{m} \equiv \pm 2(\bmod 2 k)$. Then, either $y_{0} \equiv \pm 2(\bmod 2 k)$ or $k y_{0}+z_{0} \equiv \pm 2(\bmod 2 k)$. If $k y_{0}+z_{0} \equiv \pm 2(\bmod 2 k)$, then $z_{0} \equiv \pm 2(\bmod k)$, say $z_{0}=\alpha k \pm 2$, where α is an integer with $|\alpha|<\sqrt{3 k / 2}+2 / k$ by (2.6). Thus, $y_{0}^{2} \equiv \pm 4 \alpha k\left(\bmod k^{2}\right)$ and by (2.6) we have $k^{2}-4|\alpha| k$. If $k \geq 29$, then $y_{0}^{2}=k^{2}-4|\alpha| k>2 k$, which contradicts (2.6). The only odd integers k with $3 \leq k \leq 27$ such that $\left(z_{0}, y_{0}\right)$ with y_{0} odd is a solution of (2.3) satisfying (2.6) are 7 and 19 , and then $\left(z_{0}, y_{0}\right)=(17,3)$ and $(89,5)$, respectively (note that y_{0} must be odd, since y_{0} and z_{0} now have the same parity and z_{0} is odd). However, in either case $z_{0} \pm 2 \not \equiv 0(\bmod k)$, that is, z_{0} is not of the form $\alpha k \pm 2$. Therefore, n is even and $y_{0} \equiv \pm 2(\bmod 2 k)$. It follows from (2.6) that $y_{0}=2$ and $z_{0}= \pm k$.

Now one can easily obtain the following three lemmas in the same ways as Lemmas 4.2 to 4.4 in [15].

Lemma 2.3. If $v_{m}=w_{n}$ has a solution with $n \geq 2$ in the case of $z_{0}=k$ or with $n \geq 6$ in the case of $z_{0}=-k$, then $n \geq 2 k^{2}-6$.

Lemma 2.4. If $y=w_{n}$, then $\log y>(n-1) \log (1.942 k)$.
Lemma 2.5. If $v_{m}=w_{n}$ has a solution with $n \neq 0$, then $m>n$. Moreover, if $k \geq 5$, then $m \leq 2 n$; if $k=3$, then $m \leq 3 n$.

3 Application of a theorem of Bennett

Let $\theta_{1}=\sqrt{1-4 / k^{2}}$ and $\theta_{2}=\sqrt{1-1 / k^{2}}$. Then, a theorem ([2, Theorem 3.2]) of Bennett can be applied if $k^{2}>\max \left\{4^{9}, 1^{9}\right\}$, that is, $k>512$.
Theorem 3.1. If $k>512$, then the numbers θ_{1} and θ_{2} satisfy

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|,\left|\theta_{2}-\frac{p_{2}}{q}\right|\right\}>\left(2680 k^{2}\right)^{-1} q^{-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda=1+\frac{\log \left(660 k^{2}\right)}{\log \left(0.0116 k^{4}\right)}<2 .
$$

The following lemma is similar to Lemma 3.6 in [15].
Lemma 3.2. All positive solutions of the system of Diophantine equations (2.2) and (2.3) satisfy

$$
\max \left\{\left|\theta_{1}-\frac{x}{k y}\right|,\left|\theta_{2}-\frac{z}{k y}\right|\right\}<\frac{2.2}{y^{2}} .
$$

Combining Theorem 3.1 and Lemma 3.2, one can bound $\log y$ above in terms of k.
Lemma 3.3. Suppose that $\left\{k^{2}-4, k^{4}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$-quadruple with $k>512$. Then,

$$
\log y<\frac{8 \log (8.77 k) \log (0.329 k)}{\log (0.00419 k)}
$$

Proof. Applying Theorem 3.1 with $p_{1}=x, p_{2}=z, q=k y$, we see from Lemma 3.2 that

$$
\left(2680 k^{2}\right)^{-1}(k y)^{-\lambda}<\frac{2.2}{y^{2}}
$$

Noting $\lambda<2$, one can easily see that the desired inequality holds.
Proposition 3.4. Suppose that $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$-quadruple with $d \neq 4 k^{4}-8 k^{2}$. Then, $k \leq 511$.

Proof. If $n=0$, then $d=0$, which cannot be an element in a $D\left(4 k^{2}\right)$-quadruple. If $n=2$ with $z_{0}=-k$, then $d=4 k^{4}-8 k^{2}$. Denoting w_{4} with $z_{0}=-k$ by w_{4}^{-}, we easily see that

$$
v_{5}<w_{4}^{-}<v_{7}
$$

indeed, $w_{4}^{-}=8 k^{4}-12 k^{2}+2, v_{5}=2 k^{4}-6 k^{2}+2, v_{7}=2 k^{6}-10 k^{4}+12 k^{2}-2$. Since m is odd and n is even by Lemma 2.2, we may apply Lemma 2.3. Suppose that $k \geq 513$. Then, Lemmas 2.3, 2.4 and 3.3 together imply that

$$
\begin{equation*}
\frac{2 k^{2}-7}{8}<\frac{\log (8.77 k) \log (0.329 k)}{\log (1.942 k) \log (0.00419 k)}=: f(k) . \tag{3.1}
\end{equation*}
$$

Since $f(k)$ is a decreasing function for $k \geq 513$, we have $f(k) \leq f(513)<9$, which contradicts (3.1).

4 The reduction method

By the standard method (see, e.g., [15, Lemma 3.9]), the following estimate on the linear form in three logarithms is obtained.

Lemma 4.1. If $v_{m}=w_{n}$ has a solution with $n \neq 0$, then

$$
\begin{equation*}
0<m \log \alpha_{1}-n \log \alpha_{2}+\log \alpha_{3}<10 \alpha_{2}^{-m^{\prime}}, \tag{4.1}
\end{equation*}
$$

where

$$
\alpha_{1}=\frac{k+\sqrt{k^{2}-4}}{2}, \alpha_{2}=k+\sqrt{k^{2}-1}, \alpha_{3}=\frac{4 \sqrt{k^{2}-1}}{\sqrt{k^{2}-4}\left(2 \sqrt{k^{2}-1} \pm k\right)},
$$

and $m^{\prime}=m$ if $k \geq 5 ; m^{\prime}=2 m / 3$ if $k=3$.

The following theorem of Matveev gives an upper bound for m.
Theorem 4.2. ([18]) Let Λ be a linear form in logarithms of l multiplicatively independent totally real algebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational integer coefficients $b_{1}, \ldots, b_{l}\left(b_{l} \neq 0\right)$. Let $h\left(\alpha_{j}\right)$ denote the absolute logarithmic height of α_{j} for $1 \leq j \leq l$. Define the numbers D, $A_{j}(1 \leq j \leq l)$ and B by $D=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{l}\right): \mathbb{Q}\right], A_{j}=\max \left\{D h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right|\right\}, B=$ $\max \left\{1, \max \left\{\left|b_{j}\right| A_{j} / A_{l} ; 1 \leq j \leq l\right\}\right\}$. Then,

$$
\log |\Lambda|>-C(l) C_{0} W_{0} D^{2} \Omega
$$

where

$$
\begin{aligned}
C(l) & =\frac{8}{(l-1)!}(l+2)(2 l+3)(4 \mathrm{e}(l+1))^{l+1} \\
C_{0} & =\log \left(\mathrm{e}^{4.4 l+7} l^{5.5} D^{2} \log (\mathrm{e} D)\right) \\
W_{0} & =\log (1.5 \mathrm{e} B D \log (\mathrm{e} D)), \quad \Omega=A_{1} \cdots A_{l}
\end{aligned}
$$

Proposition 4.3. Suppose that $\left\{k^{2}-4, k^{2}, 4 k^{2}-4, d\right\}$ is a $D\left(4 k^{2}\right)$-quadruple. Then $m<10^{17}$.
Proof. We apply Theorem 4.2 with $l=3, D=4, b_{1}=m, b_{2}=-n, b_{3}=1$. We have $A_{1}=2 \log \alpha_{1}<2 \log k$ and $A_{2}=2 \log \alpha_{2}<2 \log (2 k)$. Since the minimal polynomial of α_{3} over \mathbb{Z} is

$$
\left(k^{2}-4\right)^{2}\left(3 k^{2}-4\right)^{2} X^{4}-32\left(k^{2}-1\right)\left(k^{2}-4\right)\left(5 k^{2}-4\right) X^{2}+256\left(k^{2}-1\right)^{2}
$$

up to a multiple of a constant, and $\operatorname{gcd}\left(\left(k^{2}-4\right)\left(3 k^{2}-4\right), 16\left(k^{2}-1\right)\right)$ divides 3 , the leading coefficient a_{0} of the minimal polynomial of α_{3} over \mathbb{Z} satisfies

$$
\frac{\left(k^{2}-4\right)^{2}\left(3 k^{2}-4\right)^{2}}{9} \leq a_{0} \leq\left(k^{2}-4\right)^{2}\left(3 k^{2}-4\right)^{2} .
$$

Since α_{3} with the minus sign is less than 1.91 and α_{3} with the plus sign is less than 1 , we have

$$
\begin{aligned}
A_{3}=4 h\left(\alpha_{3}\right) & <\log \left(1.91^{2}\left(k^{2}-4\right)^{2}\left(3 k^{2}-4\right)^{2}\right)<8 \log (1.55 k), \\
A_{3} & >\log \left(\frac{\left(k^{2}-4\right)^{2}\left(3 k^{2}-4\right)^{2}}{9}\right)>8 \log (0.829 k) .
\end{aligned}
$$

Hence, we obtain the following:

$$
\begin{aligned}
B & <\max \left\{\frac{2 m \log k}{8 \log (0.829 k)}, \frac{2 n \log (2 k)}{8 \log (0.829 k)}\right\}<\frac{m \log (2 k)}{4 \log (0.829 k)}<0.5 m, \\
C(3) & =\frac{8}{2!} \cdot 5 \cdot 9(16 \mathrm{e})^{4}<6.45 \cdot 10^{8}, \\
C_{0} & =\log \left(\mathrm{e}^{4.4 \cdot 3+7} \cdot 3^{5.5} \cdot 16 \log (4 \mathrm{e})\right)<29.9, \\
W_{0} & =\log (1.5 \mathrm{e} B \cdot 4 \log (4 \mathrm{e}))<\log (20 m), \\
\Omega & =A_{1} A_{2} A_{3}<32 \log (k) \log (2 k) \log (1.55 k)<73.1(\log k)^{3} .
\end{aligned}
$$

It follows from Theorem 4.2 that

$$
\log \left|m \log \alpha_{1}-n \log \alpha_{2}+\log \alpha_{3}\right|>-2.3 \cdot 10^{13} \log (20 m)(\log k)^{3} .
$$

Assume that $m \geq 10$. Since $\log \left(10 \alpha_{1}^{-m^{\prime}}\right)<-m^{\prime} \log k$, we see from Lemma 4.1 that

$$
2.3 \cdot 10^{13}(\log k)^{2}>\frac{m^{\prime}}{\log (20 m)}=: F(m)
$$

By Proposition 3.4, we have $F(m)<2.3 \cdot 10^{13}(\log (511))^{2}<9 \cdot 10^{14}$. Since $F(m)$ is increasing and $F\left(10^{17}\right)>10^{15}$, we obtain $m<10^{17}$.

Proof of Theorem 1.3. Dividing (4.1) by $\log \alpha_{2}$, we have

$$
\begin{equation*}
0<m \kappa-n+\mu<A B^{-m} \tag{4.2}
\end{equation*}
$$

where

$$
\kappa=\frac{\log \alpha_{1}}{\log \alpha_{2}}, \mu=\frac{\log \alpha_{3}}{\log \alpha_{2}}, A=\frac{10}{\log \alpha_{2}}, B=\alpha_{2}(k \geq 5) \text { or } \alpha_{2}^{2 / 3}(k=3) .
$$

Lemma 4.4. ([9, Lemma 5 a)]) Let M be a positive integer and p / q a convergent of the continued fraction expansion of κ such that $q>6 M$. Put $\epsilon=\|\mu q\|-M\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\epsilon>0$, then the inequality (4.2) has no solution in the range

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m \leq M
$$

As seen at the beginning in the proof of Proposition 3.4, we may assume that $n \geq 4$ for $z_{0}=k$ and $n \geq 6$ for $z_{0}=-k$. We can thus use Lemma 2.3, which implies $n \geq 2 k^{2}-6$. We apply Lemma 4.4 with $M=10^{17}$ for odd k with $3 \leq k \leq 511$ and for each sign of α_{3}. For $5 \leq k \leq 511$, the second convergent is needed in 2 cases and the third convergent is needed in two cases. In any case, the first step of reduction gives $m \leq 21$, which contradicts Lemma 2.3 with $k \geq 5$. For $k=3$, the first step of reduction gives $m \leq 40$ and the second step gives $m \leq 10$ (the second convergent is needed only in the first step for the minus sign of α_{3}). This contradicts Lemma 2.3 with $k=3$, and completes the proof of Theorem 1.3.

References

[1] Baker, A., H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford Ser. Vol. 20, 1969, 129-137.
[2] Bennett, M. A. On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., Vol. 498, 1998, 173-199.
[3] Brown, E. Sets in which $x y+k$ is a always a square. Math. Comp., Vol. 45, 1985, 613-620.
[4] Dujella, A. Generalization of a problem of Diophantus. Acta Arith., Vol. 65, 1993, 15-27.
[5] Dujella, A. On the exceptional set in the problem of Diophantus and Davenport. Applications of Fibonacci Numbers, Vol. 7, 1998, 69-76.
[6] Dujella, A. An absolute bound for the size of Diophantine m-tuples. J. Number Theory, Vol. 89, 2001, 126-150.
[7] Dujella, A. There are only finitely many Diophantine quintuples. J. Reine Angew. Math., Vol. 566, 2004, 183-214.
[8] Dujella, A., A. Filipin, C. Fuchs. Effective solution of the $D(-1)$-quadruple conjecture. Acta Arith., Vol. 128, 2007, 319-338.
[9] Dujella, A., A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser., Vol. 49, September 1998, No. 195, 291-306.
[10] Dujella, A., A. M. S. Ramasamy. Fibonacci numbers and sets with the property $D(4)$. Bull. Belg. Math. Soc. Simon Stevin, Vol. 12, 2005, 401-412.
[11] Filipin, A. Extensions of some parametric families of $D(16)$-triples. Int. J. Math. Math. Sci., 2007, Article ID 63739, 12 pages.
[12] Filipin, A., B. He, A. Togbé, On the $D(4)$-triple $\left\{F_{2 k}, F_{2 k+6}, 4 F_{2 k+4}\right\}$. Fibonacci Quart., Vol. 48, 2010, 219-227.
[13] Fujita, Y. The non-extensibility of $D(4 k)$-triples $\left\{1,4 k(k-1), 4 k^{2}+1\right\}$ with $|k|$ prime. Glas. Mat. Ser., Vol. III 41, 2006, 205-216.
[14] Fujita, Y. The extensibility of Diophantine pairs $\{k-1, k+1\}$. J. Number Theory, Vol. 128, 2008, 322-353.
[15] Fujita, Y. Extensions of the $D\left(\mp k^{2}\right)$-triples $\left\{k^{2}, k^{2} \pm 1,4 k^{2} \pm 1\right\}$. Period. Math. Hungarica, Vol. 59, 2009, 81-98.
[16] Gupta, H., K. Singh, On k-triad sequences. Internat. J. Math. Math. Sci., Vol. 8, 1985, 799-804.
[17] He, B., A. Togbé. On a family of Diophantine triples $\left\{k, A^{2} k+2 A,(A+1)^{2} k+2(A+1)\right\}$ with two parameters. Acta Math. Hungar., Vol. 124, 2009, 99-113.
[18] Matveev, E. M. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math., Vol. 64, 2000, 1217-1269.
[19] Mohanty, S. P., A. M. S. Ramasamy, On $P_{r, k}$ sequences. Fibonacci Quart., Vol. 23, 1985, 36-44.
[20] Mollin, R. A. Quadratics. CRC Press, 1996.
[21] Rickert, J. H. Simultaneous rational approximation and related Diophantine equations. Math. Proc. Cambridge Philos. Soc., Vol. 113, 1993, 461-472.

