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Abstract: Let n be a nonzero integer. A set of m distinct positive integers is called a D(n)-m-
tuple if the product of any two of them increased by n is a perfect square. Let k be an integer
greater than two. In this paper, we show that if {k* — 4, k% 4k* — 4,d} is a D(4k?)-quadruple,
then d = 4k* — 8k2.
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1 Introduction

Let n be a nonzero integer. A set of m distinct positive integers {a1, . .., a,,} is called a Diophan-
tine m-tuple with the property D(n) or a D(n)-m-tuple, if a;a; + n is a perfect square for each
1,gwithl <i<j<m.

The first example of a D(1)-quadruple was found by Fermat, which was the set {1, 3, 8, 120}.
Baker and Davenport ([1]) showed that {1,3, 8,120} cannot be extended to a D(1)-quintuple.
There are several generalizations of this result (see [17] and its references); for example, {k —
1, k+1} cannot be extended to a D(1)-quintuple ([14]). A folklore conjecture says that there does
not exist a D(1)-quintuple, and Dujella ([7]) showed that there does not exist a D(1)-sextuple and
that there exist only finitely many D(1)-quintuples.

The n = 4 case can be considered in the same way as the n = 1 case (see [12] and its
references) and it is conjectured that there does not exist a D(4)-quintuple. The following is a
stronger version of this conjecture.

Conjecture 1.1. ([10, Conjecture 1]) If {a, b, ¢, d} is a D(4)-quadruple with a < b < ¢ < d, then
d = a+b+c+ (abc+rst)/2, wherer, s, t are positive integers defined by ab+4 = r?, ac+4 =
s? be+4 =t
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In general, if n = 2 (mod 4), then there does not exist a D(n)-quadruple ([3, 16, 19]).
Dujella ([4]) showed that if n # 2 (mod 4) and if n ¢ S := {—4,—-3,—1,3,5,8,12,20}, then
there exists at least one D(n)-quadruple, and conjectured the following.

Conjecture 1.2. ([S]) There does not exist a D(n)-quadruple forn € S.

There are several results supporting Conjecture 1.2 for the n = —1 case (see [8] and its
references), and the validity of Conjecture 1.2 for n = —1 implies the one for n = —4 ([4,
Remark 3]). For n ¢ {41,+4}, it is not easy to show either nonexistence or uniqueness of
extension of a D(n)-triple, unless an argument using congruences modulo a power of 2 works.
This is why we have to know the fundamental solutions of at least two of the Pell equations

ay? —bx® =1, az* —cax* =1, b2 — > = 1.

The first author ([13]) showed that the D (4k)-triple {1, 4k(k — 1), 4k* + 1} with |k| prime cannot
be extended to a D(4k)-quadruple. Moreover, he ([15]) proved that the D(Fk?)-triple {k?, k* +
1,4k? 4+ 1} cannot be extended to a D(Fk?)-quintuple. In either case, ab and ac are of Richaud-
Degert type ([20]), which gives the fundamental solutions of the corresponding Pell equations.
Furthermore, the Padé approximation method (a theorem of Bennett ([2]) or of Rickert ([21]))
can work for the D(Fk?)-triple. Since D(+4)-tuples have similar properties to D(=+1)-tuples as
mentioned above, it is natural to ask whether the same is valid for D(+4k?)-tuples and D(+k?)-
tuples. This leads us to consider the D(F4k?)-triple {k?, k* & 4, 4k* + 4}.

Suppose that {k?, k* + 4,4k? & 4,d} is a D(F4k?)-quadruple. If k is even, say k = 2K/,
this is equivalent to that {(k)?, (k')? £ 1,4(k")> £ 1,d'} is a D(F(k')?)-quadruple with some
integer d'. It follows from Theorems 1.4 and 1.5 in [15] that we may assume that % is odd. Then,
since —4k? = 12 (mod 16), the set {k?, k* + 4, 4k? + 4, d} cannot be a D(—4k?)-quadruple by
Remark 3 in [4], stating that if {ay, as, a3, a4} is @ D(16] 4+ 12)-quadruple with some integer [,
then every a; is even. Therefore, the D(4k?)-quadruple {k* — 4, k2, 4k? — 4, d} with k odd is only
to be considered. Our theorem in this paper is the following.

Theorem 1.3. Let k be an integer greater than two. If {k* — 4,k? 4k* — 4,d} is a D(4k?)-
quadruple, then d = 4k* — 8k2.

Since Theorem 1.3 with k& even follows immediately from Theorem 1.4 in [15], we will as-
sume that £ is odd throughout this paper.

The quadruple in Theorem 1.3 can be interpreted as the quadruple {k* — 4, k% x1 9, 220} in
[4], where Z;,,, and ¥y, are double sequences satisfying z,o = (y3, — 4k*)/(k* — 4) and
Yoo = 2k, Y10 = 2k% — 4, Yn+1,0 = KYno — Yn—1,0. Another interpretation of the quadruple is
to regard it as an analogue of the quadruple in Conjecture 1.1. More generally, if {a, kb, c} is a
D(4k?)-triple, then {a, k?b, c, d} is a D(4k?)-quadruple with d = a + k?b + ¢ + (abc + rst)/2,
where 1, s, are positive integers defined by ab + 4 = 12, ac + 4k? = s%, bc + 4 = t2. Thus,
Theorem 1.3 gives an example for which an analogue of Conjecture 1.1 holds. Note that this
analogy does not hold in general. Filipin ([11, Theorem 3.10]) showed that if {1, 20,33, d} is a
D(16)-quadruple, then d = 105 or 273.

The organization of this paper is as follows. In Section 1, we transform the problem into
a system of Diophantine equations, whose solution can be expressed as the intersection of two
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recurrence sequences. The congruence method due to Dujella then gives a lower bound for the
number of terms. In Section 3, the lower bound and the theorem of Bennett together yield £ <
511. Finally, in Section 4 using the reduction method ([1, 9]) we arrive at a contradiction for each
k with k£ < 511.

2 A lower bound for solutions

Let k be an odd integer greater than two. Suppose that {k* — 4, k% 4k?* — 4,d} is a D(4k?)-
quadruple. Then, there exist positive integers x, 3/, z’ such that

(K> —4)d + 4k* = 2%, k*d + 4k* = (v')?, (4k* — 4)d + 4K* = (). 2.1

Clearly we have ' = 0 (mod k) and 2 = 0 (mod 2), which enable us to write ¥/ = ky
and 2z’ = 2z with positive integers y and z. Eliminating d from (2.1), we obtain the system
of Diophantine equations

2 — (K* — 4)y* = 16, (2.2)
22— (k* = 1)y* = 4 — 3k°. (2.3)

Since kisodd, k’—4 =5 (mod 8). Hence, (2.2) implies that both x and y are even, say © = 2.X
and y = 2Y. Then, (2.2) can be rewritten as X? — (k? — 4)Y? = 4. The positive solutions of this
Pell equation have the form

X+YVi2—4 (k+\/k2—4>m
2 B 2

and hence, the positive solutions of (2.2) have the form
k+VE2—4\"
r+yvki—4=14 (%) with nonnegative integers m. 2.4)

The positive solutions of (2.3) can be expressed as follows.

Lemma 2.1. Let (z,y) be a positive solution of the Diophantine equation (2.3). Then, there exist
a nonnegative integer n and a solution (2o, yo) of (2.3) such that

z4+yvVk?—1=(z0+yoVk?—1)(k +VE>—-1)" (2.5)

/3
’Z()| < §k3, 0< Yo < V 2k. (2.6)

Proof. We omit the proof, since it proceeds along the same lines as the proof of Lemma 1 in [6]
or Lemma 3.1 in [15]. [l

with

Lemma 2.2. Ifv,, = w, has a solution, then m is odd, n is even and zy = *+k, yo = 2.
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Proof. By (2.4) and (2.5), we may write y = v,,, = w,,, where

v =0, v1 =2, Upao = kUpps1 — Uy 2.7)
and
wo = Yo, W1 = kYo + 20, Wpio = 2kwp,11 — Wy,. (2.8)
Hence,
(Um  (mod 2k)),.~, = (0,2,0,-2,0,2,...)
and

(wn,  (mod 21{5))”20 = (Yo, kYo + 20, —Y0, kYo — 20, Yo, - - - )
Suppose that v,,, = 0 (mod 2k). Then either yo = 0 (mod 2k) or kyy + 2o = 0 (mod 2k). By
(2.6), we must have kyo + 2o = 0 (mod 2k). Then, 2o = 0 (mod k) implies y2 = 4 (mod k?).
It follows from (2.6) that y2 = 4, which implies that 2, is even. This contradicts (2.3). Hence, m
is odd and v,,, = £2 (mod 2k). Then, either yy = +2 (mod 2k) or kyy + 20 = £2 (mod 2k).
If kyo + 20 = +2 (mod 2k), then zp = +2 (mod k), say zo = ak + 2, where « is an integer
with |a] < /3k/2+2/k by (2.6). Thus, y? = +4ak (mod k?) and by (2.6) we have k? — 4|a|k.
If k > 29, then y? = k* — 4|a|k > 2k, which contradicts (2.6). The only odd integers k with
3 < k < 27 such that (2o, yo) with yo odd is a solution of (2.3) satisfying (2.6) are 7 and 19, and
then (zo,40) = (17,3) and (89, 5), respectively (note that y, must be odd, since y, and zo now
have the same parity and 2, is odd). However, in either case zp = 2 # 0 (mod k), that is, zq is
not of the form ak + 2. Therefore, n is even and yy = £2 (mod 2k). It follows from (2.6) that
Yo = 2 and zy = tk. [l

Now one can easily obtain the following three lemmas in the same ways as Lemmas 4.2 to
4.4 in [15].

Lemma 2.3. If v,, = w, has a solution with n > 2 in the case of zo = k or with n > 6 in the
case of 2y = —k, then n > 2k*> — 6.

Lemma 2.4. If y = w,, thenlogy > (n — 1) log(1.942k).

Lemma 2.5. If v,, = w, has a solution with n # 0, then m > n. Moreover, if k > 5, then
m < 2n;if k = 3, then m < 3n.

3 Application of a theorem of Bennett

Let 0 = /1 —4/k? and 0, = /1 — 1/k?%. Then, a theorem ([2, Theorem 3.2]) of Bennett can
be applied if £ > max{4°, 1%}, that is, k > 512.

Theorem 3.1. If k > 512, then the numbers 6, and 0 satisfy

max{ o, — L1 g, — 22 } > (2680k2) g~
q q
for all integers p1, p2, q with ¢ > 0, where
log(660k?)

— —_— <D
log(0.0116k%)
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The following lemma is similar to Lemma 3.6 in [15].

Lemma 3.2. All positive solutions of the system of Diophantine equations (2.2) and (2.3) satisfy

{ } 2.2
max < —
Yy

Combining Theorem 3.1 and Lemma 3.2, one can bound log y above in terms of k.

i
0, — —
1 k_y

z

0, — =
2 k?y

Y

Lemma 3.3. Suppose that {k? — 4, k%, 4k* — 4,d} is a D(4k?)-quadruple with k > 512. Then,

8log(8.77k) log(0.329k)
log(0.00419k)

logy <

Proof. Applying Theorem 3.1 with p; = x, py = z, ¢ = ky, we see from Lemma 3.2 that

22
(2680k) ! (ky) ™ < 7

Noting A < 2, one can easily see that the desired inequality holds. ]

Proposition 3.4. Suppose that {k* — 4, k? , 4k* —4,d} is a D(4k?)-quadruple with d # 4k* —8k>.
Then, k < 511.

Proof. If n = 0, then d = 0, which cannot be an element in a D(4k?)-quadruple. If n = 2 with
29 = —k, then d = 4k* — 8k2. Denoting w, with zo = —k by w; , we easily see that

vy < wy < Ur;

indeed, w; = 8k* — 12k? +2, vs = 2k* — 6k* + 2, v; = 2k — 10k* + 12k? — 2. Since m is odd
and n is even by Lemma 2.2, we may apply Lemma 2.3. Suppose that £ > 513. Then, Lemmas
2.3, 2.4 and 3.3 together imply that

2k% — 7 _ log(8.77k) log(0.329k)
8 log(1.942k) log(0.00419k)

= f(k). 3.1)
Since f(k) is a decreasing function for £ > 513, we have f(k) < f(513) < 9, which contradicts

(3.1). []

4 The reduction method

By the standard method (see, e.g., [15, Lemma 3.9]), the following estimate on the linear form in
three logarithms is obtained.

Lemma 4.1. Ifv,, = w, has a solution withn # 0, then

0 <mloga; —nlogas + logas < 10a2_m/, 4.1
where
k+Vk?—4 4Vk? — 1
oy=——— am=k+VE2—-1 a3 = ,
! 2 2 S VR —4VEE -1+ k)

andm' =mifk > 5m' =2m/3ifk = 3.
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The following theorem of Matveev gives an upper bound for m.

Theorem 4.2. ([18]) Let A be a linear form in logarithms of | multiplicatively independent
totally real algebraic numbers a1, ...,y with rational integer coefficients by, ..., b, (b # 0).
Let h(«a;) denote the absolute logarithmic height of o; for 1 < j < l. Define the numbers D,
A; (1 <j < land Bby D = [Q(ay,...,q) : Q], A; = max{Dh(e;),|loga;|}, B =
max {1, max {|b;|A;/A;; 1 < j <}}. Then,

log |A| > —C(Z)COWODQQ,

where

8
e = (-1

Co = log(e**7 55 D% log(e D)),
Wy =log(1.5e BDlog(e D)), Q= A;---A,.

(142)(21 +3)(de(l + 1)),

Proposition 4.3. Suppose that {k* — 4, k?, 4k* — 4, d} is a D(4k?)-quadruple. Then m < 10'7.

Proof. We apply Theorem 4.2 with [ = 3, D = 4, by = m, by = —n, b3 = 1. We have
Ay = 2logay < 2logk and Ay = 2log s < 2log(2k). Since the minimal polynomial of a3
over Z is

(k* —4)*(3k* — 4)2X* — 32(k* — 1)(k* — 4)(5k* — 4)X? + 256(k* — 1)?

up to a multiple of a constant, and ged((k* — 4)(3k* — 4),16(k* — 1)) divides 3, the leading
coefficient ag of the minimal polynomial of a3 over Z satisfies

U2 APOI AP < g < k2 - a2k - a2

Since a3 with the minus sign is less than 1.91 and a3 with the plus sign is less than 1, we have

Az = 4h(as) < log(1.91%(k* — 4)?(3k* — 4)?) < 8log(1.55k),

2 N\2(21.2 _ 4)2
A3>10g((k 1) éBk 1)

) > 8log(0.829k).

Hence, we obtain the following:

< 0.5m,

2m1 2n log(2 log(2
B<max{ mlog k nlog(2k) } mlog(2k)

81og(0.829k)” 81og(0.829k) 41og(0.829k)
8
C(3) = 515" 9(16e)* < 6.45 - 10°,

Co = log (e***¥7.3%% . 161og(4€)) < 29.9,

Wy =log(l.5e B -4log(4e)) < log(20m),
Q = A1 Ay A3 < 32log(k) log(2k) log(1.55k) < 73.1(log k)®.

It follows from Theorem 4.2 that

log |m log a; — nlog as + log as| > —2.3 - 10" log(20m) (log k)®.
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Assume that m > 10. Since log(10a;™) < —m/log k, we see from Lemma 4.1 that

m/

2.3-10%(log k)? > ——— =: F(m).
(log k) log(20m) (m)
By Proposition 3.4, we have F'(m) < 2.3 - 10" (log(511))% < 9 - 10'. Since F'(m) is increasing

and F(10'7) > 10'®, we obtain m < 10'". O
Proof of Theorem 1.3. Dividing (4.1) by log a5, we have
O<mrk—n+pu<AB™™, 4.2)

where | | 10
e ,B=oay (k>5) or ¥ (k =3).

K

- ) :u - ) =

log iy log cvp log ap
Lemma 4.4. ([9, Lemma 5 a)]) Let M be a positive integer and p/q a convergent of the continued
, where || - || denotes the

fraction expansion of k such that ¢ > 6M. Put ¢ = ||uq|| — M||kq
distance from the nearest integer. If € > 0, then the inequality (4.2) has no solution in the range

log(Aq/e)

<m < M.
log B ==

As seen at the beginning in the proof of Proposition 3.4, we may assume that n > 4 for
29 = k and n > 6 for zy = —k. We can thus use Lemma 2.3, which implies n > 2k? — 6. We
apply Lemma 4.4 with M = 107 for odd k with 3 < k < 511 and for each sign of as. For
5 < k < 511, the second convergent is needed in 2 cases and the third convergent is needed in
two cases. In any case, the first step of reduction gives m < 21, which contradicts Lemma 2.3
with k£ > 5. For k = 3, the first step of reduction gives m < 40 and the second step gives m < 10
(the second convergent is needed only in the first step for the minus sign of a3). This contradicts
Lemma 2.3 with £ = 3, and completes the proof of Theorem 1.3. ]
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