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1 Introduction

Throughout the paper, we assume |g| < 1 and for positive integer n, we use the standard notation

(a;q)n = 1:[(1 — aq")
and -
(;)oo == [ [(1 — ag").

In his notebook [10], [3, p. 34], Ramanujan defines his general theta function f(a, b) by
> n(n+1) = n(n—1)
flab):= > a2 b7 =(—a;ab)eo(—b;ab)sc(absab)s, |ab| < 1.
Following Ramanujan, we define

o) = flg.0)= > ¢ = )L}

(¢ —0) oo

n=—oo
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U(q) = fla.¢*) = iQ”("“)/Q _ @50
n=0

(4:¢%)o0
and -
f=q) = f(=¢,=¢") = > (=1)"¢"®" " = (¢;¢)we-
For convenience, we denote f(—q") := f,
Let,
g2 7 ¢ ¢

H(q) :

= 1.1
1+q¢ 1+, 1+¢, 14+¢" . (1.1)

denote the Ramanujan—Gollnitz—Gordon continued fraction. On page 229 of his second note-
book[10], Ramanujan recorded a product representation of H (g), namely
12 (467047 6%

along with the following two identities for H(q):

g eld?)
H(q) H(a) g% (q*) (13
and . ( )
(g
H(q) ) = g2 (q*) (9

Without any knowledge of Ramanujan’s work, Gollnitz [8] and Gordon [7] rediscovered and
proved (1.2) independently. Later G. E. Andrews [1] proved (1.2) as a corollary of a more general
result.

The Gollnitz—Gordon functions are defined as

=GP e 1
S@) =2 (@ P)n T (G )05 )T )

n=0

and
1

(0% 6%) 0 (0% 6%) 0 (¢°; 0%

)= 3 G -

n=0

‘We note that

H(q) = q”%. (1.5)

H. H. Chan and S. S. Haung [4], gave many new identities involving H(q), including relations
between H (q) and H(q?), H(q) and H(g"). K. R. Vasuki and B. R. Srivatsa Kumar [12] obtained
new identities relating H(q) with H(q®), H(q") and H(q'') by employing modular equations
given by Ramanujan. Recently B. Cho, J. K. Koo and Y. K. Park [6] have extended the above
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results on the continued fraction H(q) to all odd primes p by computing the affine models of
modular curves X (I') with I'=I";(8) () ['o(16p).

S. S. Huang [9] established many modular relation involving Gollnitz—Gordon fuctions which
are analogous to the famous Ramanujan’s fourty identities. He further extracted interesting par-
tition results from some of the modular relations. Later S. L. Chen and Huang [5], N. D. Baruah,
J. Bora and N. Saikia [2] further established new modular relations for the Gollnitz- Gordon
functions.

Employing the modular relations found in [9], in Section 3 of this paper we established an
alternate proof of relations between H(q) and H(q™), n =2, 3, 5 and 7. In Section 2, we recall
some known results, which will be used to prove identities in Section 3.

2 Some preliminary results

Lemma 2.1. We have

_ S Ly _ _
w(q) = e ©(—q) 7 Y(q) = o flg) = "
o S _f5 o _ LR
Y(—q) = T x(q) = I xX(—q) = 1 S(@)T(q) = Y
3 /3
S(q) = ————— d T(@) = ——>——.
@ fif(—a—q) (@) faf (=@ —q¢*)
For a proof of the above identities, one may refer [9] and [2].
Lemma 2.2. [4]. We have
p(¢?) _ 1—H*(q)
plg) 1+ H*q)
Lemma 2.3. We have A
J72 (é) _ H(@[H*(q) - 1
S 1+ H*(q) — 6H%*(q)
Proof. From Entry 25 (vii) [3, p. 40], we have
¢*(q) — ¢*(—q) = 16qv*(¢°)
which can be rewritten as
v*(q) Y(q?)
——— —1=16g——. 2.1
¢t (—q) T (=) @D
From Lemma 2.1., we have
Ao —\n) 2)

Substituting (2.2) in (2.1), we see that
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p'le) | _ (é)s
iy =10 () (2.3)

Now from Entry 25 (vi) [3, p. 40], we have
©*(q) + ©*(—q) = 2¢*(¢*),
which can be rewritten as ) 0 o
=) _ @)
2 o 2 :
©*(q) ©*(q)
Using the above identity on the left hand side of (2.3), we obtain

8
1
(7)o
q
' [2 % (q) 1}

Employing Lemma 2.2. on the righthand side of the above and then after some simplification

yields the required result.
Lemma 2.4. [9] We have

ST (q%) — aS(¢*)T(q") = ?;32-
2J16
Lemma 2.5. [13] If P,:= eld") and Q),,: 902((]2”), th
o(—q") ©?(q")
2P = P, + 1 (2.4)
2 P,
and
1
P +1=20Q,. (2.5)
Lemma 2.6. [9] We have
3 3 _ J3Ja
S(q°)S(q) +qT(¢*)T(q) = 7
1f12
and Y,
S(a*)T(q) — aS(@)T(¢%) = =2
f3f4
Lemma 2.7. [9] We have
S(¢)S(@) + ¢T()T(q) = 220
f1f20
and i
S(a°)T(q) — ¢*S(q)T(¢°) = ==°.
fafs

Lemma 2.8. [3, p. 69] If 1 is even, then
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(n/2)-1
v —UV 2—1/2 m2—um m 2—V2 —zMm 2—112
1/)(q”+ W(qu ): SO(C]u(u )¢(q2“) + E : q* f(q(“+2 )(w )7q(u 2m) (p ))

m=1

vm —2vm 3/4)—(uv 2_p2 v — v
f(qQ e )_i_q(ud/ll) (1 /2)¢<q2u(u )f(qu s ).

Lemma 2.9. We have

(w(—q))Q _ p(=a)ele?)
¥(q) P(@)Y(a*)
Proof. From Entry 25 (iv) [3, p. 40], we have

V(q) = p(@)P(g")- (2.6)
Changing ¢ to —q and then dividing throughout by ¢)?(¢*) in the above identity, we obtain

V) (—q) w(—q)tﬁ(q?)_

Vgt (g

Changing ¢ to ¢? in (2.6) and employing the same in the righthand side of the above identity,

we obtain the required result.
Lemma 2.10. [9] We have

ST (q) — ¢*S()T(q") = 1.

3 Main results

In this section, we give alternating proof of continued fraction H(q) with the continued fractions
H(q™) forn=2,3,5and7.
Theorem 3.1. [4]. Letu = H(q) and v = H(q?). Then,

9 1—-v
u® = .
1+wv

Proof. Let x = H(q?) and y = H(q"). By Lemma 2.4., we have

S(OT(@) — ¢S(@)T(g") = 142 3.1)
f2f16
Changing g to —q in (3.1), we obtain
S(g"T(¢%) +¢S(¢A)T(q") = fafw (3.2)
f1f4f16

Dividing (3.1) by (3.2) and using Lemma 2.1., we have

S(a)T(¢*) — aS(@*)T(q") _ ¢(—q)
S(@)T(¢*) +qS(@)T(q") (=4
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Now using (1.5) on the left hand side of the above identity, we obtain

Then, by Lemma 2.5., we can write
1 <H(q2) - H(ff*))2
P \H(¢®)+ H(q")
Setting n = 2 in (2.5) and then employing (2.4), we find that

2P
PE+1

= 2@ — 1
Changing ¢ to ¢* in Lemma 2.1, we observe that

p(¢h) _1-H*(¢%)
p(®) 1+ H*(¢?)

Using (3.3) and the above identity in (3.4) and then factorizing, we find that

Q2 =

(' —y+y2® +2°)(—y* —y+y2* —2%) =0

Now by definition of H(q), we have

r=q(1 - +¢" — ¢+ ¢ —2¢" +2¢"° — ¢"° +2¢” — 4> +3¢% =3¢ + - --

and

y=q (1 —q" +q'2 — ¢" + ¢® — 2¢* + 2¢™ — 30 4 2g™ — 4% 4 3¢%2 — 3¢ ...

Using (3.6) and (3.7) in (3.5), we see that the first and second factor becomes
—¢*%(2 — 2¢" + 4¢5 + 10¢® — 12¢"° — 8¢"* + 18¢™ — 2¢"* + - --)

and
—q*(2 — 2¢* + 2¢* — 8¢° + 10¢"° — 2¢'* — 8¢"* +22¢* + ---),

which implies that second factor does not vanish. Hence,
v —y+yx? + 22 =0.

Now changing ¢ to ¢'/? in the above, we get the required result.
Theorem 3.2. [12] Let u = H(q) and v = H(q*). Then,

uv? — 3u? + u® — 3u? + 3uPv — wvt + 3w — v = 0.
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Proof. From Lemma 2.6., we have

S()T(q) —aS(@T(¢*) _ fifis
S(®)S(q) +qT(*)T(q)  f3f7°

Multiplying ¢'/? on both sides and then employing (1.5) on the left hand side of above, we

obtain ) )
500 (1) ()
1+ uv g f4 f3

Squaring both sides and then employing Lemma 2.3. on the right hand side of the above

identity, we find that
u—v\?  [1+ut—6u? v(v?—1)
T+uw) U u(u?—1) 1402 —6v2)

Factorizing the above identity using Maple, we see that

(uv — v+ 1+ u)(uww + v+ 1 —u)(u*v® — 3u*v? + u® — 3u?

+3u*v — wv* + 3uv? —v) = 0. (3.8)

Now by definition of v and v, we have
u=q"1-q+¢ —q'+¢" - 24" +2¢° — ¢’ +2¢" — 4¢" +---) (3.9)
and

v :q3/2(1 _q3+q9 _q12+q15 _2q21 +2q24 _q27+2q33_4q36+”‘>‘ (310)

Using (3.9) and (3.10) in (3.8), we see that the first, second and the third factor becomes,
1 —i—ql/Q(l U+ PP PP PP+ 2 — T2 0 ),

1— g2 (1= 2=+ P2+ P+ — ¥ — 27 — ¢ =28 — 24 P+ ).

and
*2(3 = 3¢+ 15¢* — 6¢° — 18¢° + 9¢" + 42¢° + 51¢'? + 6¢'% + 60¢™* — 156¢"° + - - - ),
which implies that the first and second factor does not vanish. Hence,
o — 3u? + u? — 3u® + 3uPv — wvt + 3w — v =0

This completes the proof.
Theorem 3.3. [12] Let u = H(q) and v = H(q"). Then,

605 — 5udv? + u® — bute® + 10u*v® — 100 + 10u30? — 10u0? + 5uv
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—uv® + 5uvt — v = 0.

Proof. From Lemma 2.7., we have

S(¢*)T(q) = ¢*S(@T(°) _ frfa
S(@®)S(q) + T ()T (g fufs

Multiplying the above identity throughout by ¢'/? and using (1.5) on the left hand side, we

obtain
u—v 1/2f1f20

T+aw U fufs

Taking power 4 on both sides of the above and employing Lemma 2.3. on the righthand side
and then factorizing using Maple, we deduce that

(wv — v+ 1+ u)(uww + v+ 1 —u)(u® — 5uv? + u® — 5u*v° + 10u*v?

—10uv* 4+ 10u*v? — 10u*0® + 5u*v — wn® + 5uv® —v) =0 (3.11)

Now, from the definition of v and v, we have
u=H(q)=¢"*1-q+—¢"+" —2¢" +2¢° —¢" +2¢" — ) (3.12)
and
v = H(q5) — q5/2(1 _ q5 + q15 . q2o + q25 . 2q35 + 2q40 . q45 + 2q55 o ) (3.13)
Using (3.12) and (3.13) in (3.11), we see that the first, second and the third factor becomes,

1+q1/2(1_q_q2+q5/2+q3_q7/2_q4+q5+q11/2_q13/2_q7+2q8+q17/2+"'),

1 g1 =g =P+ P+ q = = — V2 32— T+ 28— T2 1),
and
—¢®2(5430¢> —15¢° - 25¢* +40¢° +75¢° — 195¢" +60¢°+335¢° — 565¢'° +25¢M +995¢'2 +- - ),
respectively. Then, it clearly follows that the first and the second factor do not vanish. Hence,
ubv® — 5uPv? 4+ u® — 5ute® + 10ute® — 10v*® + 10u*v? — 1060 + 5u’v
—uv® + 5uv* —v =0

This completes the proof.
Theorem 3.4. [12] Let u := H(q) and v := H(q"). Then,

v 4+ 08 4+ u® — wv — 496303 — TuSv + Tuv® — Tuww® — Tuw” + 28uv® — Tude®
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+70utv* — Ul + 28ubv? — TuTv — UV + Tuv® — Tuv® + U — 49020 — u” = 0.

Proof. Putting 1 =4, v =3 in Lemma 2.8., it can be shown [3, p. 315] that

W(g)(q") = e(@®)Y(¢®) + q(g") v (g®) + ¥ (d*®)p(q").

Changing ¢ to —q in the above and then adding the resultant identity with the above identity,
we find that

(Q)P(d") + (=) (=q") = 20(¢*)(¢%) + 20"V (¢ )p(a?). (3.14)
From Corollary [3, p. 40] and Entry 31 [3, p. 48], we have

U(g) = f(¢® ¢") +af(* ¢").

Changing ¢ to ¢” in the above identity and then multiplying the resultant identity with the
above, we see that

V(v = f(@® ") f(@ d°) + af (¢, d") f(d*, )+

" f(@®d" (@ )+ P ) (™ ™).

Changing ¢ to —q in the above and then adding the resultant identity with the above identity,
we obtain

W(QU(q") +V(—)v(—q") = 2f(¢°,¢") f(a*, a™) + 2¢° F (¢, ") f(a**, ¢™®).

Now from (3.14) and (3.15), we have

F@®, ) (" d°) + & F(@®,d) F (™, 4%) = ¢(a®)0(a®) + °b(a™)p(a").
Changing ¢ to ¢*/? and then ¢ to —gq in the above identity, we have
=&, =) (=", =¢") + " f(=a, =) f(=d", =4"°) = o(a")¥(q") — ¢’U(a™)o(a?).
Using Lemma 2.1. on the left hand side of the above identity, we obtain

]- _ f4f28
S(q)S(q")  fif

Multiplying the above identity throughout by S(¢)S(¢")T(¢)T(¢") and then using Lemma
2.1. on the righthand side, we obtain

1

T(q)T(q") a

[e(d") v (") — @Pv(d®) ()] -

S()T(g) + ¢*S(g)T(q") = 22111

= o e = PU)e@)]
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From Lemma 2.1. the righthand side of the above identity can be written as

e(@")P(g") 5 P(@®)e(d?) }

S(aNT(q) + 4" S(@)T(¢") = {m T o (=u(=q7)

The above identity can be rewritten as

772 Y(g")¥(¢®) { p@) wld) }
V(=q)¥(—q") '

Q") q (et
Now from Lemma 2.10. and the above identity, we have

—7/2 ¢(_Q) w(_(ﬁ)

ST (q) +q¢*'S(@)T(q") = q

ST - *S@T(@) 1 (") @)
S(@")T(q) +¢*S(@)T(q") { eld)  wld®) }
q*Y(e*)  ¢"*Y(q*)

Squaring on both sides of the above identity and then employing Lemma 2.9., we see that

, P9 p(¢?) p(— q)s@(q Y
(5(q7)T(Q) - q3S(Q)T(q7)) _ (e ¥(gt) v(gM) ¥(e*)

S(q)T(q) + ¢*S()T(q7) el r
q"2P () 1/ 2¢

p(—q ) ft J1
() f3
Squaring on both sides of the above identity, then employing (1.5) on the left hand side,
employing Lemma 2.1. and Lemma 2.2. on the righthand side, we deduce that

( u—v )4 _ (=t —6w?)(1 = w?) (1 + 0" = 20*)(1 = v*)(w)

1+ uv (u—v)4(1 4 uv)?

Now from (2.2) we have

Factorizing the above identity using Maple, we get the required result.
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