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1 Introduction

Throughout the paper, we assume |q| < 1 and for positive integer n, we use the standard notation

(a; q)n =
n−1∏
k=0

(1− aqk)

and

(a; q)∞ :=
∞∏
k=0

(1− aqk).

In his notebook [10], [3, p. 34], Ramanujan defines his general theta function f(a, b) by

f(a, b) :=
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1.

Following Ramanujan, we define

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
(−q;−q)∞
(q;−q)∞

,
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ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

For convenience, we denote f(−qn) := fn

Let,

H(q) :=
q1/2

1 + q+

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 +...
(1.1)

denote the Ramanujan–Göllnitz–Gordon continued fraction. On page 229 of his second note-
book[10], Ramanujan recorded a product representation of H(q), namely

H(q) = q1/2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

, (1.2)

along with the following two identities for H(q):

1

H(q)
−H(q) =

ϕ(q2)

q1/2ψ(q4)
(1.3)

and
1

H(q)
+H(q) =

ϕ(q)

q1/2ψ(q4)
. (1.4)

Without any knowledge of Ramanujan’s work, Göllnitz [8] and Gordon [7] rediscovered and
proved (1.2) independently. Later G. E. Andrews [1] proved (1.2) as a corollary of a more general
result.

The Göllnitz–Gordon functions are defined as

S(q) :=
∞∑
n=0

(−q; q2)n
(q2; q2)n

qn
2

=
1

(q; q8)∞(q4; q8)∞(q7; q8)∞

and

T (q) :=
∞∑
n=0

(−q; q2)n
(q2; q2)n

qn
2+2n =

1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
.

We note that

H(q) := q1/2
T (q)

S(q)
. (1.5)

H. H. Chan and S. S. Haung [4], gave many new identities involvingH(q), including relations
between H(q) and H(q3), H(q) and H(q4). K. R. Vasuki and B. R. Srivatsa Kumar [12] obtained
new identities relating H(q) with H(q5), H(q7) and H(q11) by employing modular equations
given by Ramanujan. Recently B. Cho, J. K. Koo and Y. K. Park [6] have extended the above
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results on the continued fraction H(q) to all odd primes p by computing the affine models of
modular curves X(Γ) with Γ=Γ1(8)

⋂
Γ0(16p).

S. S. Huang [9] established many modular relation involving Göllnitz–Gordon fuctions which
are analogous to the famous Ramanujan’s fourty identities. He further extracted interesting par-
tition results from some of the modular relations. Later S. L. Chen and Huang [5], N. D. Baruah,
J. Bora and N. Saikia [2] further established new modular relations for the Göllnitz- Gordon
functions.

Employing the modular relations found in [9], in Section 3 of this paper we established an
alternate proof of relations between H(q) and H(qn), n = 2, 3, 5 and 7. In Section 2, we recall
some known results, which will be used to prove identities in Section 3.

2 Some preliminary results

Lemma 2.1. We have

ϕ(q) =
f2

5

f1
2f4

2 , ϕ(−q) =
f1

2

f2
, ψ(q) =

f2
2

f1
, f(q) =

f2
3

f1f4

ψ(−q) =
f1f4
f2

, χ(q) =
f 2
2

f1f4
χ(−q) =

f1
f2
, S(q)T (q) =

f2f
2
8

f1f 2
4

S(q) =
f 2
8

f4f(−q,−q7)
and T (q) =

f 2
8

f4f(−q3,−q3)
.

For a proof of the above identities, one may refer [9] and [2].
Lemma 2.2. [4]. We have

ϕ(q2)

ϕ(q)
=

1−H2(q)

1 +H2(q)
.

Lemma 2.3. We have

q1/2
(
f4
f1

)4

=
H(q)[H2(q)− 1]

1 +H4(q)− 6H2(q)
.

Proof. From Entry 25 (vii) [3, p. 40], we have

ϕ4(q)− ϕ4(−q) = 16qψ4(q2)

which can be rewritten as

ϕ4(q)

ϕ4(−q)
− 1 = 16q

ψ(q2)

ϕ4(−q)
. (2.1)

From Lemma 2.1., we have

ψ(q2)

ϕ(−q)
− 1 =

(
f4
f1

)4

. (2.2)

Substituting (2.2) in (2.1), we see that
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ϕ4(q)

ϕ4(−q)
− 1 = 16q

(
f4
f1

)8

. (2.3)

Now from Entry 25 (vi) [3, p. 40], we have

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2),

which can be rewritten as
ϕ2(−q)
ϕ2(q)

= 2
ϕ2(q2)

ϕ2(q)
− 1.

Using the above identity on the left hand side of (2.3), we obtain

16q

(
f4
f1

)8

=
1[

2ϕ
2(q2)
ϕ2(q)

− 1
] .

Employing Lemma 2.2. on the righthand side of the above and then after some simplification
yields the required result.
Lemma 2.4. [9] We have

S(q4)T (q2)− qS(q2)T (q4) =
f1f32
f2f16

.

Lemma 2.5. [13] If Pn:=
ϕ(qn)

ϕ(−qn)
and Qn:=

ϕ2(q2n)

ϕ2(qn)
, then

2P 2
2 = P1 +

1

P1

(2.4)

and

1

P 2
n

+ 1 = 2Qn. (2.5)

Lemma 2.6. [9] We have

S(q3)S(q) + qT (q3)T (q) =
f3f4
f1f12

and
S(q3)T (q)− qS(q)T (q3) =

f1f12
f3f4

.

Lemma 2.7. [9] We have

S(q5)S(q) + q3T (q5)T (q) =
f2f10
f1f20

and
S(q5)T (q)− q2S(q)T (q5) =

f2f10
f4f5

.

Lemma 2.8. [3, p. 69] If µ is even, then
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ψ(qµ+ν)ψ(qµ−ν) = ϕ(qµ(µ
2−ν2)ψ(q2µ) +

(µ/2)−1∑
m=1

qµm
2−νmf(q(µ+2m)(µ2−ν2), q(µ−2m)(µ2−ν2))

f(q2νm, q2µ−2νm) + q(µ
3/4)−(µν/2)ψ(q2µ(µ

2−ν2)f(qµν , q2µ−µν).

Lemma 2.9. We have (
ψ(−q)
ψ(q)

)2

=
ϕ(−q)ϕ(q2)

ψ(q2)ψ(q4)
.

Proof. From Entry 25 (iv) [3, p. 40], we have

ψ2(q) = ϕ(q)ψ(q2). (2.6)

Changing q to −q and then dividing throughout by ψ2(q4) in the above identity, we obtain

ψ2(−q)
ψ2(q4)

=
ϕ(−q)ψ(q2)

ψ2(q4)
.

Changing q to q2 in (2.6) and employing the same in the righthand side of the above identity,
we obtain the required result.
Lemma 2.10. [9] We have

S(q7)T (q)− q3S(q)T (q7) = 1.

3 Main results

In this section, we give alternating proof of continued fraction H(q) with the continued fractions
H(qn) for n= 2, 3, 5 and 7.
Theorem 3.1. [4]. Let u = H(q) and v = H(q2). Then,

u2 = v
1− v
1 + v

.

Proof. Let x = H(q2) and y = H(q4). By Lemma 2.4., we have

S(q4)T (q2)− qS(q2)T (q4) =
f1f32
f2f16

. (3.1)

Changing q to −q in (3.1), we obtain

S(q4)T (q2) + qS(q2)T (q4) =
f 2
2 f32

f1f4f16
. (3.2)

Dividing (3.1) by (3.2) and using Lemma 2.1., we have

S(q4)T (q2)− qS(q2)T (q4)

S(q4)T (q2) + qS(q2)T (q4)
=

ϕ(−q)
ϕ(−q2)

.

54



Now using (1.5) on the left hand side of the above identity, we obtain

H(q2)−H(q4)

H(q2) +H(q4)
=

ϕ(−q)
ϕ(−q2)

.

Then, by Lemma 2.5., we can write

1

P1

=

(
H(q2)−H(q4)

H(q2) +H(q4)

)2

(3.3)

Setting n = 2 in (2.5) and then employing (2.4), we find that

2P1

P 2
1 + 1

= 2Q2 − 1 (3.4)

Changing q to q2 in Lemma 2.1, we observe that

Q2 =
ϕ(q4)

ϕ(q2)
=

1−H2(q2)

1 +H2(q2)
.

Using (3.3) and the above identity in (3.4) and then factorizing, we find that

(y2 − y + yx2 + x2)(−y2 − y + yx2 − x2) = 0 (3.5)

Now by definition of H(q), we have

x = q(1− q2 + q6 − q8 + q10 − 2q14 + 2q16 − q18 + 2q22 − 4q24 + 3q26 − 3q30 + · · · ) (3.6)

and

y = q2(1− q4 + q12 − q16 + q20 − 2q28 + 2q32 − q36 + 2q44 − 4q48 + 3q52 − 3q60 · · · ) (3.7)

Using (3.6) and (3.7) in (3.5), we see that the first and second factor becomes

−q26(2− 2q4 + 4q6 + 10q8 − 12q10 − 8q12 + 18q14 − 2q18 + · · · )

and
−q2(2− 2q2 + 2q4 − 8q8 + 10q10 − 2q12 − 8q14 + 22q16 + · · · ),

which implies that second factor does not vanish. Hence,

y2 − y + yx2 + x2 = 0.

Now changing q to q1/2 in the above, we get the required result.
Theorem 3.2. [12] Let u = H(q) and v = H(q3). Then,

u4v3 − 3u3v2 + u3 − 3u2v3 + 3u2v − uv4 + 3uv2 − v = 0.
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Proof. From Lemma 2.6., we have

S(q3)T (q)− qS(q)T (q3)

S(q3)S(q) + qT (q3)T (q)
=
f 2
1 f

2
12

f 2
3 f

2
4

.

Multiplying q1/2 on both sides and then employing (1.5) on the left hand side of above, we
obtain

u− v
1 + uv

= q1/2
(
f1
f4

)2(
f12
f3

)2

.

Squaring both sides and then employing Lemma 2.3. on the right hand side of the above
identity, we find that (

u− v
1 + uv

)2

=

(
1 + u4 − 6u2

u(u2 − 1)

)(
v(v2 − 1)

1 + v2 − 6v2

)
.

Factorizing the above identity using Maple, we see that

(uv − v + 1 + u)(uv + v + 1− u)(u4v3 − 3u3v2 + u3 − 3u2v3

+3u2v − uv4 + 3uv2 − v) = 0. (3.8)

Now by definition of u and v, we have

u = q1/2(1− q + q3 − q4 + q5 − 2q7 + 2q8 − q9 + 2q11 − 4q12 + · · · ) (3.9)

and

v = q3/2(1− q3 + q9 − q12 + q15 − 2q21 + 2q24 − q27 + 2q33 − 4q36 + · · · ). (3.10)

Using (3.9) and (3.10) in (3.8), we see that the first, second and the third factor becomes,

1 + q1/2(1− 2q + q3/2 − q5/2 + q3 + q5 + q13/2 − 2q7 − q15/2 − q17/2 − q10 + · · · ),

1− q1/2(1− 2q − q3/2 + q5/2 + q3 + q5 − q13/2 − 2q7 − q15/2 − 2q8 − q17/2 + q9 + · · · ).

and

q27/2(3− 3q + 15q4 − 6q5 − 18q6 + 9q7 + 42q9 + 51q12 + 6q13 + 60q14 − 156q15 + · · · ),

which implies that the first and second factor does not vanish. Hence,

u4v3 − 3u3v2 + u3 − 3u2v3 + 3u2v − uv4 + 3uv2 − v = 0

This completes the proof.
Theorem 3.3. [12] Let u = H(q) and v = H(q5). Then,

u6v5 − 5u5v2 + u5 − 5u4v5 + 10u4v3 − 10v4u3 + 10u3v2 − 10u2v3 + 5u2v

56



−uv6 + 5uv4 − v = 0.

Proof. From Lemma 2.7., we have

S(q5)T (q)− q2S(q)T (q5)

S(q5)S(q) + q3T (q5)T (q
=
f1f20
f4f5

.

Multiplying the above identity throughout by q1/2 and using (1.5) on the left hand side, we
obtain

u− v
1 + uv

= q1/2
f1f20
f4f5

.

Taking power 4 on both sides of the above and employing Lemma 2.3. on the righthand side
and then factorizing using Maple, we deduce that

(uv − v + 1 + u)(uv + v + 1− u)(u6v5 − 5u5v2 + u5 − 5u4v5 + 10u4v3

−10u3v4 + 10u3v2 − 10u2v3 + 5u2v − uv6 + 5uv4 − v) = 0 (3.11)

Now, from the definition of u and v, we have

u = H(q) = q1/2(1− q + q3 − q4 + q5 − 2q7 + 2q8 − q9 + 2q11 − · · · ) (3.12)

and

v = H(q5) = q5/2(1− q5 + q15 − q20 + q25 − 2q35 + 2q40 − q45 + 2q55 − · · · ). (3.13)

Using (3.12) and (3.13) in (3.11), we see that the first, second and the third factor becomes,

1 + q1/2(1− q − q2 + q5/2 + q3 − q7/2 − q4 + q5 + q11/2 − q13/2 − q7 + 2q8 + q17/2 + · · · ),

1− q1/2(1− q − q2 − q5/2 + q3 + q7/2 − q4 − q5 − q11/2 + q13/2 − q7 + 2q8 − q17/2 + · · · ),

and

−q29/2(5+30q2−15q3−25q4+40q5+75q6−195q7+60q8+335q9−565q10+25q11+995q12+· · · ),

respectively. Then, it clearly follows that the first and the second factor do not vanish. Hence,

u6v5 − 5u5v2 + u5 − 5u4v5 + 10u4v3 − 10v4u3 + 10u3v2 − 10u2v3 + 5u2v

−uv6 + 5uv4 − v = 0

This completes the proof.
Theorem 3.4. [12] Let u := H(q) and v := H(q7). Then,

7u3v + v8 + u8 − uv − 49u3v3 − 7u5v + 7uv3 − 7uv5 − 7uv7 + 28u2v6 − 7u3v5
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+70u4v4 − 7u5v3 + 28u6v2 − 7u7v − 7u3v7 + 7u7v5 − 7u7v3 + 7u5v7 − 49u5v5 − u7v7 = 0.

Proof. Putting µ = 4, ν = 3 in Lemma 2.8., it can be shown [3, p. 315] that

ψ(q)ψ(q7) = ϕ(q28)ψ(q8) + qψ(q14)ψ(q2) + q6ψ(q56)ϕ(q4).

Changing q to −q in the above and then adding the resultant identity with the above identity,
we find that

ψ(q)ψ(q7) + ψ(−q)ψ(−q7) = 2ϕ(q28)ψ(q8) + 2q6ψ(q56)ϕ(q4). (3.14)

From Corollary [3, p. 40] and Entry 31 [3, p. 48], we have

ψ(q) = f(q6, q10) + qf(q2, q14).

Changing q to q7 in the above identity and then multiplying the resultant identity with the
above, we see that

ψ(q)ψ(q7) = f(q6, q10)f(q42, q70) + qf(q2, q14)f(q42, q70)+

q7f(q6, q10)f(q14, q98) + q8f(q2, q14)f(q14, q98).

Changing q to −q in the above and then adding the resultant identity with the above identity,
we obtain

ψ(q)ψ(q7) + ψ(−q)ψ(−q7) = 2f(q6, q10)f(q42, q70) + 2q8f(q2, q14)f(q14, q98).

Now from (3.14) and (3.15), we have

f(q6, q10)f(q42, q70) + q8f(q2, q14)f(q14, q98) = ϕ(q28)ψ(q8) + q6ψ(q56)ϕ(q4).

Changing q to q1/2 and then q to −q in the above identity, we have

f(−q3,−q5)f(−q21,−q35) + q4f(−q,−q7)f(−q7,−q49) = ϕ(q14)ψ(q4)− q3ψ(q28)ϕ(q2).

Using Lemma 2.1. on the left hand side of the above identity, we obtain

1

T (q)T (q7)
+ q4

1

S(q)S(q7)
=
f4f28
f 2
8 f

2
56

[
ϕ(q14)ψ(q4)− q3ψ(q28)ϕ(q2)

]
.

Multiplying the above identity throughout by S(q)S(q7)T (q)T (q7) and then using Lemma
2.1. on the righthand side, we obtain

S(q7)T (q) + q4S(q)T (q7) =
f2f14

f1f4f7f28

[
ϕ(q14)ψ(q4)− q3ψ(q28)ϕ(q2)

]
.
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From Lemma 2.1. the righthand side of the above identity can be written as

S(q7)T (q) + q4S(q)T (q7) =

[
ϕ(q14)ψ(q4)

ψ(−q)ψ(−q7)
− q3 ψ(q28)ϕ(q2)

ψ(−q)ψ(−q7)

]
The above identity can be rewritten as

S(q7)T (q) + q4S(q)T (q7) = q7/2
ψ(q4)ψ(q28)

ψ(−q)ψ(−q7)

[
ϕ(q14)

q7/2ψ(q28)
− ϕ(q2)

q1/2ψ(q4)

]
.

Now from Lemma 2.10. and the above identity, we have

S(q7)T (q)− q3S(q)T (q7)

S(q7)T (q) + q4S(q)T (q7)
=

q−7/2
ψ(−q)
ψ(q4)

ψ(−q7)
ψ(q28)[

ϕ(q14)

q7/2ψ(q28)
− ϕ(q2)

q1/2ψ(q4)

] .
Squaring on both sides of the above identity and then employing Lemma 2.9., we see that

(
S(q7)T (q)− q3S(q)T (q7)

S(q7)T (q) + q4S(q)T (q7)

)2

=

q−7
ϕ(−q)
ψ(q2)

ϕ(q2)

ψ(q4)

ϕ(−q7)
ψ(q14)

ϕ(q14)

ψ(q28)[
ϕ(q14)

q7/2ψ(q28)
− ϕ(q2)

q1/2ψ(q4)

]2 .

Now from (2.2) we have
ϕ(−q)
ψ(q2)

=
f 2
1

f 2
4

.

Squaring on both sides of the above identity, then employing (1.5) on the left hand side,
employing Lemma 2.1. and Lemma 2.2. on the righthand side, we deduce that(

u− v
1 + uv

)4

=
(1− u4 − 6u2)(1− u2)(1 + v4 − 2v2)(1− v2)(uv)

(u− v)4(1 + uv)4

Factorizing the above identity using Maple, we get the required result.
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