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Abstract: Classes of the modular ring Z4 were substituted into convergent infinite series for π 

and 2 to obtain Q, the ratio of the arc of a circle to the side of an inscribed square to yield 

π = 2 2 Q. The corresponding convergents of the continued fractions for π, 2 and Q were 
then considered, together with the class patterns of the modular rings {Z4, Z5, Z6} and decimal 
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1 Introduction 

The number ‘Pi’, π, has been studied since antiquity [1, 13]. In particular, various mathema-
ticians have developed calculations around inverse tangents and power series: John Wallis 
(1616–1703) [see Equation (1.1)], James Gregory (1638–1675) [14], Gottfried Wilfred 
Leibnitz (1646–1716) [13], John Machin (1680–1751) [17], Leonard Euler (1701–1783) [2], 
Robert Simson (1687–1768) [3], Carl Friedrich Gauss (1777–1855) [15], to mention but a few 
famous names from the history of mathematics.   

With the dawn of differential calculus, the Greek method of inscribed and circum-
scribed polygons was replaced by convergent infinite series and algebraic and trigonometric 
methods. Wallis’ elegant formula was 
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Johan Heinrich Lambert (1728–1777) was the first to provide a rigorous proof that π is 
incommensurable [5]: π cannot be the root of a rational algebraic equation. The advent of 
electronic computers has since revived interest in a variety of techniques which have also 
enriched pure mathematics [8,17]: Google now has more than 1 million places listed!  What 
more can be said? Here we outline how Integer Structure Analysis (ISA) permits a different 
analysis of the infinite series for π through functions of the rows of modular rings when 
detailed as modular arrays as in Table 1. 
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f(r) 04r  14 1 r 24 2 r 34 3 r  
Row 

Class 40  41  42  43  

0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 1. Rows of Z4 

2 Ratio of arc of a quadrant of a circle to the side 
of an inscribed square  

In a circle of radius r, the arc length of a quadrant is r
2
1 , and the length of the side of an 

inscribed square is r2 , so that the ratio of the arc of length of the quadrant to the side of the 

inscribed square is 22/ . 
We now use the modular ring Z4 to convert Equation (1.1) to 
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combining segments of four fractions for each r, and 
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so that from (2.1) and (2.2) we have that 
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If we use the values of π and 2 to 30 decimal places, we arrive at 

Q = 1.1107207348821566309637, 

and when r = 175, Equation (2.3) yields 
Q = 1.1107212. 

 The series for Q and 2 are similar in format: the product of even and odd fractions.  

The numerator, 4r + 2, for 2  is in Class 42 . Thus, the even numerator of the multiple frac-

tions produced will contain odd factors for all values of r, whereas the variable (4r + 4) 40  
will not, and those factors which do occur will cancel out. So the structures of the product 
fractions are  

2for
...2

21

21

pp

ppn


 



63 

and 

.for
...

2

21
Q

pp

m

 

The structure of π is thus resolved into 

.22 Q  (2.4) 

Q is irrational but can be useful in the analysis of the decimal expansion of π obtained 

from Q and 22 . Moreover, the “factorisation” of π should be useful in the context of cont-
inued fractions as we now illustrate. 
 Every positive number can be expressed uniquely as a regular continued fraction [5]. 
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The partial quotients {a1, a2, a3, ...} for 2 have a simple pattern  

2  = [1; 2,2,2,2,2,...], 

but no such pattern has been found for π [5]. 
 Convergents have remarkable properties and they are obtained by stopping the continued 

fractions at each successive stage [12]. The first six convergents for 2 and π may be used to 
calculate those for Q (Table 2). 
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Table 2. First six convergents for 2 , π and Q 

The convergents 
c
b  satisfy the second order linear recurrence relations [13]: 

., 1111   nnnnnnnn ccacbbab  (2.6) 

with suitable initial conditions. Thus, in the first row of Table 2, the numerators and denomin-

ators of the convergent to 2  satisfy the Pell recurrence relation in which an = 2, with initial 
terms 1 and 3 in the numerators {bn}, and 1 and 2 in the denominators {cn} (the standard Pell 
sequence [4]). There too nnn bcc 1 , analogous to the identity which relates the Fibonacci 

and Lucas numbers. We further observe that if 22cbun   where 
c
b  is any convergent to the 

continued fraction for 2 , then the elements of 
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{un} = {1,36,1225,41616,1413721,48024900,..} 

are square-triangular numbers [6] with the formal generating function 
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Questions about square-pentagonal and triangular-pentagonal numbers are still open [15].  

Finally, we note that  1194.1
2
1  Q , in which the argument of the radical is rational. 

3 Distribution of decimal places of π 

3.1 Modular rings 

The consecutive positions of the decimals of π do no appear to have a regular pattern, but we 
can analyse these positions indirectly.  We do these by classifying them in terms of their 
position, n, in the array of a modular ring. See Tables 1,3,4 for Z4, Z5 and Z6.  See also 
[9,10,11].   
 

f(r) 05r  15 1 r  25 2 r 35 3 r  45 4 r  
Row 

Class 50  51  52  53  54  

0  0 1 2 3 4 
1  5 6 7 8 9 
2  10 11 12 13 14 
3  15 16 17 18 19 
4  20 21 22 23 24 
5  25 26 27 28 29 

Table 3. Rows of Z5 

f(r) 26 1 r  16 2 r  36r  16 4 r 26 5 r  36 6 r  
Row 

Class 61  62  63  64  65  66  

0 -2 -1 0 1 2 3 
1 4 5 6 7 8 9 
2 10 11 12 13 14 15 
3 16 17 18 19 20 21 
4 22 23 24 25 26 27 
5 28 29 30 31 32 33 

Table 4. Rows of Z6 

The sequence of classes provides patterns that have some repetitions for the 100 decimal 
places considered (Table 5), but do these patterns persist for the more than billion places 
already known? 
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 o e Total Z4 Z5 Z6 

1 5 3 8 13301023 13204340 46414512

2 8 4 12 201011310311 111333331343 316162641226

3 7 4 11 13101332023 40240231411 66234241154

4 5 5 10 2330130230 2431240022 5423623165

5 3 5 8 00230312 43013110 15143643

6 4 5 9 302110322 202142023 451263615

7 5 3 8 11330203 34421114 42625336

8 4 8 12 322230322100 131402243143 235121453631

9 4 10 14 10222201322300 02403240032400 23535356415451

0 5 3 8 022113111 20401202 55322244

Table 5: Class patterns for n (position of number in decimal array for π) 
Legend: o=odd; e=even; bars ans subscripts are omitted for notational brevity in the elements 

of Z4,Z5,Z6: e.g., 43  is represented by 3, etc. 

3.2 Decimal patterns 

If each 100 decimals are placed in a 1010 array, the column, row and number n of the position 
of the decimal in the array will be characteristic of that number. Comparison of sequential 100 
decimals can then be made. n*, the right-end-digit (RED) of n, will equal the column in which 
the number falls. For example, if n = 9, 19, 29, 39,…, the number will fall in column 9 (Table 6). 
 When 300 decimal places are considered (three arrays), each decimal number has 
characteristic features in terms of rows in which they do not occur (Table 7). Also the appear-
ances of these numbers in the sequence, n, (1st decimal n = 1) have certain REDs that do not 
occur.  For instance, for 7, n never has a RED of 1, while 3 never has a RED of 8.  Thus for the 
first 300 decimals, 7 never occurs for n = 1, 11,  21,  31,  …, 291, while 3 never occurs for n =  
8, 18, 28, 38, …, 298. 
 

N = 2 N = 4 N = 8 

Col Row n Col Row n Col Row n

6 1 6 2 1 2 1 2 11
6 2 16 9 2 19 8 2 18
1 3 21 3 3 23 6 3 26
8 3 28 6 4 36 4 4 34
3 4 33 7 6 57 5 4 35
3 6 53 9 6 59 2 6 52
3 7 63 10 6 60 7 7 67
3 8 73 10 7 70 4 8 74
6 8 76 7 9 87 8 8 78
3 9 83 2 10 92 1 9 81
3 10 93 4 9 84
   8 9 88

Table 6(a): N = 2n 
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N = 3 N = 6 N = 9 
Col Row n Col Row n Col Row n

9 1 9 7 1 7 5 1 5

5 2 15 10 2 20 2 2 12

7 2 17 2 3 22 4 2 14

4 3 24 1 5 41 10 3 30

5 3 25 9 7 69 8 4 38

7 3 27 2 8 72 2 5 42

3 5 43 5 8 75 4 5 44

6 5 46 2 9 82 5 5 45

4 7 64 8 10 98 5 6 55

6 9 86 8 6 58

1 10 91 2 7 62

   9 8 79

   10 8 80

   10 10 100

Table 6(b). 3|N 

N = 0 N = 1 N = 5 N = 7 
Col Row n Col Row n Col Row n Col Row n 

22 4 32 1 1 1 4 1 4 3 2 13

10 5 50 3 1 3 8 1 8 9 3 29

4 6 54 7 4 37 10 1 10 9 4 39

5 7 65 10 4 40 1 4 31 7 5 47

1 8 71 9 5 49 8 5 48 6 6 56

7 8 77 8 7 68 1 6 51 6 7 66

5 9 85 4 10 94 1 7 61 6 10 96

7 10 97  10 9 90   

Table 6(c). N < 9 

Rows missing n* missing 

Decimal 
Numbers 1st 100 2nd 100 3rd 100 1–300 1st 100 2nd 100 3rd 100 1–300 

0 1,2,3 9 2,3,4,6,8 --- 3,6,8,9 0,3 1,2,3,6,9 3 
1 2,3,6,8,9 2,3,9 3,6,8 3 2,5,6 1,2,6,7,9 4,2 2 
2 5 3,10 2,4,7 --- 0,2,4,5,7,9 1,7,8 2,6,7 7 
3 4,6,8 1,6,8,9 1,5,6 6 0,2,8 0,2,8,9 8,9 8 
4 5,8 4 4,5,9 --- 1,4,5,8 0 5,9 --- 
5 2,3,8,10 2,7,9 5,7,9,10 --- 2,3,5,6,7,9 4,5,6 1,4,7,8,9 --- 
6 4,6 4,5,6,7,8 1,5,10 --- 3,4,6 2,3,5,6,9 5 --- 
7 1,8,9 1,3,5,8,9,10 2,6,7,8 8 0,1,2,4,5,8 1,3,5,8,9 1,3,6,7,10 1 
8 1,5,10 --- 2,5,9,10 --- 3,9 6,8 1,10 --- 
9 9 1,2,4,6 3,4,7,8 --- 1,3,6,7 1,5,6,7,8 1,2,3,5,6,10 1,6 

Table 7. Distribution of decimals n = 1–300. 
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4 Final Comments 

Billions of decimal places have been calculated for π and it continues to be the subject of many 
papers. REDs and ISA with modular rings introduce some new perspectives.  

Finally, it is of interest to note that from the work of the famous computational mathe-
matician, Derek Lehmer [7], came the neat and relevant result that the arctangents of the 
reciprocals of alternate odd-indexed Fibonacci numbers sum to π/4. 
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