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Abstract: Classes of the modular ring Z, were substituted into convergent infinite series for z
and /2 to obtain Q, the ratio of the arc of a circle to the side of an inscribed square to yield

7 =22 Q. The corresponding convergents of the continued fractions for z, V2 and Q were
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1 Introduction

The number ‘Pi’, z, has been studied since antiquity [1, 13]. In particular, various mathema-
ticians have developed calculations around inverse tangents and power series: John Wallis
(1616-1703) [see Equation (1.1)], James Gregory (1638-1675) [14], Gottfried Wilfred
Leibnitz (1646-1716) [13], John Machin (1680-1751) [17], Leonard Euler (1701-1783) [2],
Robert Simson (1687-1768) [3], Carl Friedrich Gauss (1777-1855) [15], to mention but a few
famous names from the history of mathematics.

With the dawn of differential calculus, the Greek method of inscribed and circum-
scribed polygons was replaced by convergent infinite series and algebraic and trigonometric
methods. Wallis’ elegant formula was

T 2 2 4 4 6 6 8 8
=X X=X —=X—X—X—X—X... (1.2)
2 1 3355 7 729
Johan Heinrich Lambert (1728-1777) was the first to provide a rigorous proof that = is
incommensurable [5]: = cannot be the root of a rational algebraic equation. The advent of
electronic computers has since revived interest in a variety of techniques which have also
enriched pure mathematics [8,17]: Google now has more than 1 million places listed! What
more can be said? Here we outline how Integer Structure Analysis (ISA) permits a different
analysis of the infinite series for = through functions of the rows of modular rings when
detailed as modular arrays as in Table 1.
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f(r) 4r, 4r,+1 | 4r,+2 | 4r, +3
Row — — — —

Class 04 14 24 34
0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
5 20 21 22 23
6 24 25 26 27
7 28 29 30 31

Table 1. Rows of Z4

2 Ratio of arc of a quadrant of a circle to the side
of an inscribed square

In a circle of radius r, the arc length of a quadrant is %ﬂf, and the length of the side of an

inscribed square is JJ2r , so that the ratio of the arc of length of the quadrant to the side of the

inscribed square is7z/232 .
We now use the modular ring Z4 to convert Equation (1.1) to

= (4r+2)(4r +4)
2.1
U (4r +1)4r +3)’(4r +5) 1)
combining segments of four fractions for each r, and

® 4r+2
2 2.2
1_[4r+2 -1 (22)

so that from (2.1) and (2.2) we have that
Ty ar+ay
N2 11 (4r +4) -1 (2.3)
=Q.
If we use the values of = and +/2 to 30 decimal places, we arrive at
Q =1.1107207348821566309637,

and when r = 175, Equation (2.3) yields
Q =1.1107212.

The series for Q and +/2 are similar in format: the product of even and odd fractions.
The numerator, 4r + 2, for /2 is in Class 2.. Thus, the even numerator of the multiple frac-

tions produced will contain odd factors for all values of r, whereas the variable (4r + 4) €0,
will not, and those factors which do occur will cancel out. So the structures of the product
fractions are

2" pl P2... for \/_
P1P2
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and

m
2 for Q.
P1P2...
The structure of z is thus resolved into
7 =2:2Q. (2.4)

Q is irrational but can be useful in the analysis of the decimal expansion of z obtained

from Q and 2+/2 . Moreover, the “factorisation” of z should be useful in the context of cont-
inued fractions as we now illustrate.
Every positive number can be expressed uniquely as a regular continued fraction [5].

1 1 1 1
a, + =a, + o
a,+a,+a,+
1 (2.5)]

=[a,;a,,a,,8,,...].

The partial quotients {a, ay, as, ...} for V2 have a simple pattern
V2 =[1;2,2,2,2,2,..],

but no such pattern has been found for z [5].

Convergents have remarkable properties and they are obtained by stopping the continued
fractions at each successive stage [12]. The first six convergents for J2and 7 may be used to
calculate those for Q (Table 2).

Number Convergents
1 3 7 17 41 99
V2 1 2 5 2 | 2 | 7w
3 22 333 355 103993 104348
i 1 7 106 113 33102 | 33215
0 3 22 1665 2130 3015797 | 104348
2 21 1484 1921 2714364 93951
Table 2. First six convergents for V2, mand Q
The convergents % satisfy the second order linear recurrence relations [13]:
bn+l = anbn + bn—l’ Chyp =&,C, +Cppy. (2.6)

with suitable initial conditions. Thus, in the first row of Table 2, the numerators and denomin-

ators of the convergent to J2 satisfy the Pell recurrence relation in which a, = 2, with initial
terms 1 and 3 in the numerators {b,}, and 1 and 2 in the denominators {c,} (the standard Pell
sequence [4]). There too ¢, , +c, =b,, analogous to the identity which relates the Fibonacci

and Lucas numbers. We further observe that if u =b?c® where % IS any convergent to the

continued fraction for /2 , then the elements of
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{un} = {1,36,1225,41616,1413721,48024900,..}

are square-triangular numbers [6] with the formal generating function

< 1+X

ux's————— 2.7

HZ:(; " 1-x+x2-x3 @7)

Questions about square-pentagonal and triangular-pentagonal numbers are still open [15].
Finally, we note thatQ :%(\/1.491 +1), in which the argument of the radical is rational.

3 Distribution of decimal places of z

3.1 Modular rings

The consecutive positions of the decimals of = do no appear to have a regular pattern, but we
can analyse these positions indirectly. We do these by classifying them in terms of their
position, n, in the array of a modular ring. See Tables 1,3,4 for Z4, Zs and Zs. See also
[9,10,11].

f(r) or, 5, +1 | 5r,+2 | 5r,+3 | 5r, +4
Row

Class | 0s 1s 2s 3s 45
0 0 1 2
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24
5 25 26 27 28 29

Table 3. Rows of Zs

f(r) 6r,—2 | 6r,-1 6r, ér,+1 | 6r,+2 | 6r,+3
Row - — = — - _

Class 16 26 36 44 56 66
0 -2 -1 0 1 2 3
1 4 5 6 7 8 9
2 10 11 12 13 14 15
3 16 17 18 19 20 21
4 22 23 24 25 26 27
5 28 29 30 31 32 33

Table 4. Rows of Zg

The sequence of classes provides patterns that have some repetitions for the 100 decimal
places considered (Table 5), but do these patterns persist for the more than billion places
already known?
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oe Total Z, Zs Zs
1 53 8 13301023 13204340 46414512
2 84 12 201011310311 111333331343 316162641226
3 74 11 13101332023 40240231411 66234241154
4 55 10 2330130230 2431240022 5423623165
5 35 00230312 43013110 15143643
6 45 302110322 202142023 451263615
7 53 11330203 34421114 42625336
8 48 12 322230322100 131402243143 235121453631
9 | 410 14 10222201322300 02403240032400 23535356415451
0 53 8 022113111 20401202 55322244

Table 5: Class patterns for n (position of number in decimal array for x)
Legend: o=0dd; e=even; bars ans subscripts are omitted for notational brevity in the elements

3.2 Decimal patterns

of Z4,Z5,Z¢: €.9., 3. is represented by 3, etc.

If each 100 decimals are placed in a 10x10 array, the column, row and number n of the position
of the decimal in the array will be characteristic of that number. Comparison of sequential 100
decimals can then be made. n*, the right-end-digit (RED) of n, will equal the column in which
the number falls. For example, if n =9, 19, 29, 39,..., the number will fall in column 9 (Table 6).

When 300 decimal places are considered (three arrays), each decimal number has
characteristic features in terms of rows in which they do not occur (Table 7). Also the appear-
ances of these numbers in the sequence, n, (1% decimal n = 1) have certain REDs that do not
occur. For instance, for 7, n never has a RED of 1, while 3 never has a RED of 8. Thus for the

first 300 decimals, 7 never occurs forn=1, 11, 21, 31,

..., 291, while 3 never occurs for n =

8, 18, 28, 38, ..., 298.
N=2 N=4 N=8

Col Row n Col Row Col Row n
6 1 6 2 1 1 2 11

6 2 16 9 2 19 8 2 18

1 3 21 3 3 23 6 3 26

8 3 28 6 4 36 4 4 34

3 4 33 7 6 57 5 4 35

3 6 53 9 6 59 2 6 52

3 7 63 10 6 60 7 7 67

3 8 73 10 7 70 4 8 74

6 8 76 7 9 87 8 8 78

3 9 83 2 10 92 1 9 81

3 10 93 4 9 84

8 9 88

Table 6(a): N = 2"
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N=3 N=6 N=9
Col Row Col Row n Col Row
9 1 9 7 1 1
5 2 15 10 2 20 2 12
7 2 17 2 3 22 2 14
4 3 24 1 5 41 10 3 30
5 3 25 9 7 69 8 4 38
7 3 27 2 8 72 2 5 42
3 5 43 5 8 75 4 5 44
6 5 46 2 9 82 5 5 45
4 7 64 8 10 98 5 6 55
6 9 86 8 6 58
1 10 91 2 7 62
9 8 79
10 8 80
10 10 100
Table 6(b). 3|N
N=0 N=1 N=5 N=7
Col Row n Col Row n Col Row n Col Row n
22 4 32 1 4 1 4 3 2 13
10 5 50 1 8 1 8 9 3 29
4 6 54 4 37 10 1 10 9 4 39
5 7 65 10 4 40 4 31 7 5 47
1 8 71 5 49 8 5 48 6 6 56
7 8 77 7 68 6 51 6 7 66
5 9 85 10 94 1 7 61 6 10 96
7 10 97 10 9 90
Table 6(c). N<9
Rows missing n* missing
poomal | 1100 2100 | 3100 |1-300 [ 1°100 2" 100 39100 | 1-300
0 1,23 9] 23468 -- 3,6,8,9 0,3 1,2,3,6,9 3
1 2,3,6,8,9 23,9 368 3 256 126,79 4,2 2
2 5 3,10 247 - 0,2,45,7,9 1,78 2,6,7 7
3 46,8 1,6,89 156 6 02,8 0,2,8,9 8,9 8
4 5,8 4 459 - 1,458 0 59 | -
5 2,3,8,10 2,79] 57910 -- 2,356,79 4,56 14789 -
6 4,6 456,78 1510 | --- 346 | 235609 5] -
7 189 ] 1358910 2678| 8 012458 13589 1,3,6,7,10 1
8 1,5,10 — | 25910 --- 3,9 6,8 1,10 -
9 9 1246 3478 - 136,7] 156,78] 1235610] 16

Table 7. Distribution of decimals n = 1-300.
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Final Comments

Billions of decimal places have been calculated for = and it continues to be the subject of many
papers. REDs and ISA with modular rings introduce some new perspectives.

Finally, it is of interest to note that from the work of the famous computational mathe-

matician, Derek Lehmer [7], came the neat and relevant result that the arctangents of the
reciprocals of alternate odd-indexed Fibonacci numbers sum to n/4.
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