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1 Introduction and main results

We introduce a few notations to indicate (synthetically) some special groups of terms of the
sequence A001292 of Sloane’s On-line Encyclopedia [8]. First of all, we have to explain what
the circular sequence is [9-12].

Definition 1.1 Given the n-th term of the Smarandache consecutive sequence A007908, con-
structed through the juxtaposition of the first n integers, we define as “circular permutations”
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the n elements that constitute the subset of the permutations of the form:

aj−i+1 := 2 3 4 . . . n 1 ⇒ p1 = 1,

aj−i+2 := 3 4 . . . n 1 2 ⇒ p2 = 2,
...

aj := (i + 1) (i + 2) . . . (n− 1) n 1 2 . . . (i− 1) i ⇒ pi = i,
...

aj−i+n := 1 2 . . . (n− 1) n ⇒ pn = n

Figure 1: The first terms of the Smarandache circular sequence
and a few of the consecutive one [7].

Now we have to clarify the two parameters necessary to isolate a given class of elements
from the rest [7].

Definition 1.2 Let r := n be the n-th term of the consecutive sequence (1 2 3 . . . (n − 1) n)

and let M(r) denote the whole set of the circular permutations of that element (Definition 1.1).
Given r, we single out one particular element of the circular sequence simply by assigning a
value to the parameter p.

For example, (r = n, p = i) denote aj := (i + 1) (i + 2) . . . n 1 2 . . . (i − 1) i ∈ M(n).
Obviously 123 . . . (n− 1)n, n ≥ 1 [5], the generic element of the consecutive sequence, is
characterized by p ≡ r = n.

We know that only 13.3̄% of the terms are not divisible by 2, 3 or 5 (numbers that are
relatively prime to 30) and Ripà [7] has spelt out their form. It is possible to show that the terms
divisible by a lot of larger prime factors outline well-defined patterns inside the sequence, and
it is quite simple to detect their size.

Theorem 1.3 Given a specific prime factor 7 ≤ pr <
√
aj , where aj := (r = n, p = i), within

the whole set of numbers characterized by p and r formed by a fixed amount of digits, if aj|pr,
aj′ := (r = n + q, p = i + k)|pr. In particular, if the length in digits of r and p is the same,
q = k.
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Figure 2: Pattern obtained using pr=7 and d(r) = d(p)=2.

Theorem 1.4 Given aj and defining as ”d(p)” the length in digits of p, if d(p) is (strictly) less
than d(r) - the digit length of r -, the natural number q linked to each r̃ such that 10d(p)−1 ≤
r̃ ≤ 10d(p) − 1 is equal to k 1.

Corollary 1.5 Let d(r) and d(p) be fixed. ∀pr < 9 · 10d(r)−1 , q and k (if these exist) are
multiples of pr ( q := pr · t and k := pr · s, where t, s ∈ ℵ\{0} ) 2.

Using the results above, we can try to identify several patterns for given values of d(p) and
d(r). For example, choosing pr = 7 and d(r) = d(p) = 2, we have the pattern in fig. 2.

In this case, d(r) = d(p) ⇒ k = q = 7 ·m, particularly m = 3. The grid shows that each
column and each row contains three black squares, but this is not a general law. It is possible
to deduce that the total number of the terms of the sequence, divisible by a given ”pr” related
to a pattern that recurs more than once in the chosen d(r) = constant interval, is at least 1

pr
.

Under the previous restriction on pr, the non-strict inequality above includes all the possible
combinations of d(r) and d(p). So we could exploit this relation to synthesize a probabilistic
formula that tries to estimate the ratio of “candidate prime terms” (the elements that are not
divisible by the prime factors taken into account in the pattern analysis) in comparison with the
numerousness of the elements belonging to the d(r) = constant subset of the circular sequence:

1Clearly, d(r) ∈ [1,+ inf) and d(p) ∈ [1, d(r)].
2Since (by definition) d(r) ≥ d(p), it is possible that Corollary 1.5 is valid only for q (while there is not such

a k related to the given pr). This occurrence implies d(r) > d(p), because we are able to identify k (empirically)
only if it is less than 9 · 10d(p)−1 .
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The index h refers to the h-th element of the prime number sequence A000040 prj :=

2, 3, 5, 7, 11, 13, 17, . . . for j = 1, 2, 3, 4, 5, 6, 7, . . . so the first term of the summation above
is pr5 := 11, whereas the products start from pr4 := 7. Specifically referring to the patterns’
repetitiveness, the concrete constraint is that prh is forced to be less than 9 · 10d(r)−1 3.

Moreover, excluding from the previous formula the prj for which the corresponding pattern
does not repeat at least once, for the given value of d(r), we get a probabilistic overestimation of
the candidate primes ratio 4 (in such a case, we have to consider only the multiplication factors
linked to the primes that could be used in the pattern analysis, while the remaining subset of
A000040 must be deleted from the estimation formula (1)). To show an example of a pattern
that does not respect the previous prediction, we can take pr = 11 and d(r) = d(p) = 2 (see
fig. 3).

Figure 3: Pattern obtained using pr = 11 and d(r) = d(p) = 2.

We could also think of the implicit result [7] related to pr = 37 and r = 3. In that case
m = 1, but there are 37 · 2 terms divisible by 37 for each 37x37 grid of elements. In fact, there
are two different values of 100 ≤ r < 137 such that, for each possible value of p ≤ r, the
factorization of aj := (p + 1) . . . (r − 1) r 1 2 3 . . . (p− 1) p includes the prime factor 37.

Section 4 contains a random collection of other patterns of the same kind, for pr ∈ 7, 11, 13, 37

and d(r) ≤ 4 (fig. 6-20).
An obvious consequence is that, once we have detected the value of q := q(pr, d(r), d(p))

for a given (pr∗, d(r ≤ r∗)), we automatically know what is the value of k := k(pr∗, d(r), d(p))

for the whole set of terms identified by d(r) ≤ d(r)∗ (reminder: d(p) ≤ d(r),∀pr). The final
result is that, under the previous conditions we have stated, k is implicit in q. Another way
to formalize the same result is to postulate that, for a given pair (pr, d(p)), the value of k is
constant at the variation of the parameter r. This is graphically shown in fig. 4.

3In Section 2, this result will be combined with another one to further reduce the candidate prime numbers set.
4Due to the inequality stated a few lines before.
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Figure 4: In this graph, sectors of the same color represents sets of elements
characterized by an identical value of k.

There is another outcome (quite easy to demonstrate). Let pr = pr∗ (i.e. any prime number).
Taking two generic terms of the consecutive sequence, say a′ := (p = n′, r = n′) ∈M(n′) and
a” := (p = n”, r = n”) ∈ M(n”) – where n′ > n” –, which are both divisible by pr∗, the
following element of the circular sequence is also divisible by pr∗:

a′′′ := (n′′ + 1) (n′′ + 2) . . . (n′ − 1) n′ 1 2 3 . . . (n”− 1) n′′ ∈M(n′)

In fact, the number (n′′ + 1) . . . (n′ − 1) is divisible by pr∗ as well.

Clearly we can be sure that pr∗ divides the terms :
(n′′ + 1) (n′′ + 2) . . . (n′ − 1) n′ . . . (n′ + q − 1) (n′ + q) 1 2 3 . . . (n′′ − 1) n′′

∈M(n′ + q),

(n′′ − k + 1) . . . (n′ − 1) n′ 1 2 3 . . . (n′′ − k − 1) (n− k)′′

∈M(n′),

(n′′ − k + 1) . . . n′ (n′ + 1) . . . (n′ + q) 1 2 3 . . . (n′′ − k − 1) (n′′ − k)

∈M(n′ + q)

iff d(p) and d(r) will remain unchanged.

In this way, knowing the distribution of a small prime factor inside a portion of the consecutive
sequence, we are able to exclude another subset of non prime elements from the circular one.
These data allow us to rule out some terms of the circular sequence characterized by d(p) =
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d(r), because the known period of the consecutive sequence is q and, in those sectors, q = k

(Theorem 1.3).
To illustrate a practical application, we could adopt the same prime factors analyzed by Ripà

[7] and study one particular square grid with 37x37 terms characterized by d(r) = d(p) = 3.
The pattern is shown in fig. 5

Figure 5: Pattern of a 37x37 grid terms characterized by d(r) = d(p) = 3.

The white squares plus the red ones represent the candidate prime numbers (the red squares
are effectively prime numbers), the black squares describe terms that are divisible by (at least)
one prime factor belonging to 2,3,5,37, whereas the blue items represent the elements of the
circular sequence divisible by 7, 11 or 13. In this case, the candidate primes are 101 (with 3
prime numbers A181073) in a total of 1369 terms. In a given (d(r), d(p)) sector, overlapping
the pattern of the terms divisible by prb+1 (for b ≤ h−1) on the pattern of the elements divisible
by pr(j ≤ b), we are able to reduce the total of the candidate prime numbers to verify via a
primality test [2], with the advantage of studying only a few of the ”shortest” terms of the
sequence in our (d(r), d(p)) quadrant, for some 7 ≤ prj < 9 · 10d(r)−1 .
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2 The finite sequence of the circular digit permutations
and others

In this section we illustrate another important rule linked to the patterns of the circular sequence
divisibility and then we present a few new sequences constructed starting from the result men-
tioned above.

Definition 2.1 Let f1 f2 f3 . . . f(n−1) fn be the n−tuple of consecutive digits resulting from
the concatenation of the first n terms of the sequence A007376, where f1 := 1 and f2 := f1 +1.
We define as “circular permutations of the digits” the n elements that compound the subset of
the permutations of the form:

āl+1 := f2 f3 f4 . . . f(n−1) fn f1 ≡ 2 3 4 . . . f(n−1) fn 1,

āl+2 := f3 f4 . . . f(n−1) fn f1 f2 ≡ 3 4 . . . f(n−1) fn 1 2,
...

...
āl+i := f(i+1) f(i+2) . . . fn f1 f2 . . . fi−1 fi ≡ f(i+1) f(i+2) . . . fn 1 2 . . . fi−1 fi,
...

...
āl+n := f1 f2 f3 . . . f(n−1) fn ≡ 1 2 3 . . . f(n−1) fn.

Theorem 2.2 For some pairs (j, r),∃M(r)|prj . For these (j, r), all the circular permutations
of the digits of M(r) are also divisible by prj .

Let d(r) = constant, by Theorem 1.3, M(r)|prj ⇒ M(r + q)|prj , but there exist others
pr > 9 · 10d(r)−1 which are in possession of the same property. Besides, from Theorem 2.2, it
follows that all the possible circular permutations of the digits of M(r+ q) are also divisible by
prj .

On the next pages, we analyze the sequence by Definition 2.1, related to every circular
permutation of the digits of the canonical consecutive sequence A007908. Hence, we limit the
number of the terms of the sequence fixing d(r) at 3, so r ∈ [100, 999]. Unbundling a chunk
of the extended circular digit permutations sequence, there are a lot more new elements than in
the canonical circular sequence. Thus:

ā1 := 12345 . . . 9899100 ∈M(100),

ā2 := 23456 . . . 98991001 ∈M(100),
...

...
ā11 := 0111213 . . . 98991001234567891 ≡ 111213 . . . 98991001234567891 ∈M(100),
...

...
ā1386450 := 91234 . . . 99799899 ∈M(999).

The total of the elements of such a sequence is 192 + 195 + 198 + · · ·+ 2886 + 2889, that is

899∑
m=0

(192 + m · 3) = 192 · 900 + 3 · 899 · 900

2
= 900 · (192 + 1.5 · 899) = 1386450 (2)
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This represents only the empirical evidence of the properties we have already seen in the first
section: there are several prj (A180346) that divide the whole set of the digit permutations of
M(r̃), for r̃ ∈ [100, 999]. Let 4 ≤ j ≤ 169 (which implies 7 ≤ pr ≤ 1009), the r̃ values are the
following (and under our assumption, they belong to the sequence A181373 of the OEIS [8]):

M(r̃)|7 ⇒ r̃ = 100 + 14 · v (v = 0, 1, 2, . . . , 64)

M(r̃)|11 ⇒ r̃ = 106 + 22 · v (v = 0, 1, 2, . . . , 40)

M(r̃)|13 ⇒ r̃ = 120 + 26 · v (v = 0, 1, 2, . . . , 33)

M(r̃)|17 ⇒ r̃ = 196 + 272 · v (v = 0, 1, 2)

M(r̃)|19 ⇒ r̃ = 102 + 114 · v (v = 0, 1, 2, 3, 4, 5, 6, 7)

M(r̃)|23 ⇒ r̃ = 542

M(r̃)|29 ⇒ r̃ = 400

M(r̃)|31 ⇒ r̃ = 181 + 155 · v (v = 0, 1, 2, 3, 4, 5)

M(r̃)|37 ⇒ r̃ = 123 +
∑

s ds, (where ds = 0, 12, 25, 12, 25, . . . for s = 0, 1, 2, . . . , 47)

M(r̃)|41 ⇒ r̃ = 216 + 205 · v (v = 0, 1, 2, 3)

M(r̃)|43 ⇒ r̃ = 372 + 301 · v (v = 0, 1, 2)

M(r̃)|53 ⇒ r̃ = 127 + 689 · v (v = 0, 1)

M(r̃)|61 ⇒ r̃ = 616

M(r̃)|67 ⇒ r̃ = 399

M(r̃)|73 ⇒ r̃ = 196 + 584 · v (v = 0, 1)

M(r̃)|83 ⇒ r̃ = 118

M(r̃)|97 ⇒ r̃ = 516

M(r̃)|101 ⇒ r̃ = 416 + 404 · v (v = 0, 1)

M(r̃)|107 ⇒ r̃ = 884

M(r̃)|127 ⇒ r̃ = 106

M(r̃)|163 ⇒ r̃ = 576

M(r̃)|211 ⇒ r̃ = 306

M(r̃)|271 ⇒ r̃ = 936

M(r̃)|277 ⇒ r̃ = 174

M(r̃)|1009 ⇒ r̃ = 960

Using these relations, we are able to reduce the percentage of candidate prime terms of
the chart at the end of Section 1, since M(181)|31 and the numerousness of candidate primes
among our 1369 elements crashes at 90 (with a ratio of 0.06574).

Lemma 2.3 In the interval we have set, the ”fixed factors” from Theorem 2.2 recur with regu-
larity when r̃ grows: they are periodical and the period is a multiple of prj itself (as stated in
Corollary 1.5).

The inclusion of pr = 1009 in the list, which is above the upper limit of r̃ , represents the
proof of the existence of primes that divide all the possible circular digit permutations of a given
M(r), for which the method presented in the first section cannot be applied. It is possible to
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combine this property with the method previously shown. The synergy of these two techniques
would lead us to a very small percentage of candidate prime terms to test in the direct way 5.

We should initially know for which pairs (pr, r) there is a full match. For this purpose, it is
sufficient to apply Pascal’s method [3, 4] to derive the divisibility criteria of the prime factors
we want to consider.

Under the restriction on r made at the beginning, we can find a lot of values of pr >

9 · 10d(r)−1 = 900 characterized by the applicability of Lemma 2.3. For example, we can take
pr2157 := 18973 and r = 903.

Specifically referring to the fixed pr analysis (derived from Lemma 2.3), and considering
the finite interval we are studying, we are able to synthesize the previous conditions (for all the
given prj≤169 - implying the constraint ai(mod 10) :≡ 1, 3, 7, 9 –) in the following relations:

r̃ = 100 + 3 · v
r̃ 6= 100 + 14 · v
r̃ 6= 106 + 22 · v
r̃ 6= 120 + 26 · v
r̃ 6= 123 + 37 · v
r̃ 6= 135 + 37 · v
r̃ 6= 118, 127, 181, 196, 400, 421, 673, 820

So, there are only 233 M(r̃) in this finite sequence, that do not have (at least) a pr < 1009

that divides all the elements of the set r = constant, and these are:
103, 109, 112, 115, 121, 124, 130, 133, 139, 145, 151, 154, 157, 163, 166, 169, 175, 178, 187,
190, 193, 199, 202, 205, 208, 211, 214, 217, 220, 223, 229, 232, 235, 241, 244, 247, 256, 259,
262, 265, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 307, 313, 316, 319, 322, 325, 331,
334, 337, 340, 343, 346, 349, 355, 358, 361, 364, 367, 373, 376, 379, 385, 388, 391, 397, 403,
409, 412, 415, 418, 424, 427, 430, 433, 439, 442, 445, 448, 451, 454, 457, 460, 463, 466, 469,
472, 475, 481, 487, 490, 496, 499, 508, 511, 514, 517, 523, 526, 529, 532, 535, 538, 541, 544,
547, 550, 553, 556, 559, 565, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598, 601, 607, 610,
613, 619, 622, 625, 628, 631, 637, 643, 649, 652, 655, 658, 661, 664, 667, 670, 676, 679, 682,
685, 694, 697, 703, 706, 709, 712, 721, 724, 733, 736, 739, 742, 745, 748, 751, 754, 757, 760,
763, 769, 775, 778, 781, 784, 787, 790, 793, 799, 802, 805, 808, 811, 817, 823, 829, 835, 841,
844, 847, 850, 853, 859, 862, 865, 868, 871, 877, 880, 883, 886, 889, 892, 895, 901, 904, 907,
910, 913, 916, 919, 922, 925, 928, 931, 934, 943, 946, 955, 958, 961, 967, 970, 973, 976, 979,
985, 988, 991, 994, 997.

Considering the canonical circular sequence bounded by d(r) = 3, without using the pattern
analysis on the smallest prj , we are able to exclude most of the elements of the sequence,
limiting the candidate prime terms subset to under 11.1% of the total sum of the elements. In
fact, we have: 56039−1176

139950−2936 ≈ 0.400418 and 137014
494550

≈ 0.2770478. This implies a percentage of
candidate prime terms equal to 0.4004189 · 0.2770478 · 100 = 11.0935%.

5We are clearly referring to primality tests.
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In the case of the extended circular sequence to 1386450 terms, the percentage is even lower
than in the previous one (well below 11%).6

At this point, we could modify our finite sequence a little, without altering its representative
properties. We have to arrange, in ascending order, the 1386450 elements of (2). Cutting out
the details, it is clear that, for a given r, the first terms of the corresponding sequence subset
start with two zeros. In fact, they are composed by 2 digits fewer than most of the other “room-
mates” (in short, for a given value of the parameter r). At the end of this operation, we know
that the result does not vary, because the order of the subsets ri remains unchanged, due to the
maximum spread (between one pair of the elements of this set) of 2 digits, since each unitary
increase of r adds 3 new digits to the “standard term” linked to the preceding value of r. It
is also superfluous to specify that the numerousness of the candidate primes does not change
appreciably, as well as the considerations we have already made about the “fixed prime factors”.

Remember that the criterion at the bottom of the previous relations is general: for example,
taking r ∈ [1000, 9999] it will only vary the linear rules that describe the periodicity of the fixed
factors, but the concept will survive the new d(r). The only constraint to adhere to is that d(r)

must be constant.
Now we could once again extend the sequence of the circular digits permutations mentioned

before, defining another sequence with the same features as the previous one, but in which, af-
ter each set of permutations, only one new digit is added. Starting from the infinite extended
consecutive sequence 1, 12, 123, . . . , 1234556789, 1234567891, 12345678910, 123456789101,
. . . we consider the set of all the circular permutations of each one of these terms, as we have
already done starting from the canonical circular sequence. We could also repeat the same pro-
cess for a few other Smarandache sequences (e.g., the reverse one A000422 [1-10]). Referring
to the expanded circular digit permutations sequence, we might transpose the same questions
introduced by Ripà [7]: the results are pretty interesting. Without taking away the fun of the
discovery, choosing as example the extended consecutive sequence that we have just described,
we can only say that it contains some prime terms [11] (it does not even require deep analysis).
In fact, the shortest primes are A176942

Sm′10 := 1234567891,

Sm′14 := 12345678910111,

Sm′24 := 123456789101112131415161,

Sm′235 := 12345 . . . 1101111121131141,

Sm′2804 := 12345 . . . 96696796896997097,

Sm′4347 := 12345 . . . 1359136013611362136313,

Etc. (Note that Sm′n is exactly n digits long).

Referring to the circular sequence extended to include all the circular permutations of its
digits, it is clear that the outcome stated in the first section still remains valid considering that,
∀n′ > n”, if 1 2 3 . . . f(n′−1) fn′ is divisible by prj and that 1 2 3 . . . f(n”−1) fn” is also di-
visible by the same prime factor, then f(n”+1) . . . f(n′−1) fn′ 1 2 3 . . . f(n”−1) fn” results in

6We have taken into account the constraint for the candidate primes that implies the congruence in (mod 10) to
{1,3,7,9}.
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being divisible by prj (and obviously prj is a prime factor of f(n”+1) . . . f(n′−1) fn′ as well).
This is a general property of each number, not only for those belonging to the extended con-
secutive sequence set: taking T ′ (a random sequence composed of t′ figures that is divisible by
prj) and T” (another t” digit long sequence that is divisible by the same prj), T ′ T” and T” T ′

are both divisible by prj .
If we take a look at the sequence constructed from the circular permutations of the digits of

the extended consecutive sequence (1, 12, 123, . . . , 123456789, 1234567891, 12345678910,
1234456789101, . . . ), we can easily find a lot of sets of circular arrangements that are entirely
divisible by the same prj . So, 1 2 3 . . . 1005 1006 1007 1 plus the remaining 2921 circular
permutations of its digits are divisible by pr4 = 7 and pr5 = 11, whereas every circular permu-
tation of the digits of 1 2 3 . . . 36 37 3 is divisible by 7, 11 and 13. Section 3 contains further
comments on the topic.

3 Some observations and remarks

We could study what happens if we try to expand the set, giving the usual interval d(r) =

3, of the circular digit permutations of the 900 terms belonging to the canonical consecu-
tive sequence to the circular digit permutations of the 2698 elements that characterize the ex-
tended consecutive one (constructed – as already seen – adding only one figure of the canon-
ical sequence at the end of the previous element). Thus, ¯̄a1 := 1234 . . . 9899100, ¯̄a2 :=

234 . . . 98991001, ¯̄a11 := 0111213 . . . 98991001234567891, ¯̄a4153381 := 1234 . . . 997998999

and ¯̄a4156269 := 91234 . . . 99799899: only approximately one third of the terms belonging to
this sequence are part of the sequence formed by the circular permutations of the digits of the
canonical consecutive one, even if Lemma 2.3 is satisfied as well. In this case, we will find
new fixed factors not included in the “short version” of the sequence, e.g., pr17 := 59 (resulting
from the circular digit permutations of 1234 . . . 1121131), mixed with other prime factors that
we have already met, as pr5 = 11, which is a fixed factor for 1234 . . . 10710810.

Nevertheless, one problem arises: we cannot arrange the terms in ascending order or we
will lose the validity of Lemma 2.3. Moreover some ¯̄aj are coincident and their position inside
the sequence could not be univocally identified, e.g., ¯̄a101470 := 1234 . . . 1981992 is equal to
¯̄a102450 := 01234 . . . 1981992 and ¯̄a102941 := 001234 . . . 1981992.

The prime factors ≥ 7 that divide all the terms of the general (unlimited) sequence, con-
structed from the circular permutations of the digits of the extended consecutive one, exist
starting from 16 digit long numbers (all the circular digits permutations of 1234567891011121

are divisible by 17) without an upper limit. This is testified by the example we have already
introduced: each one of the 2922 circular permutations of the string 1234 . . . 1005100610071

is divisible by pr = 11 and we can say the same for the circular permutations of the elements
formed by 2922 + 44 · v digits, for v = 0, 1, 2, 3, . . . , 817. In this case, the period of pr = 11 is
identical to the one linked to the sequence derived by an integer value of r ∈ [1000, 9999], for
d(p) = d(r) = 4 and pr = 11.

The consideration above, leads us to the following observation involving all the subse-
quences constructed, as previously described, from the extended consecutive sequence. Starting
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from the sequence that includes every circular permutation of the extended consecutive one (1,
12, 123, . . . , 123456789, 1234567891, 12345678910, 1234456789101, . . . ), given the value
of d(r) plus the initial ¯̄aj , we obtain exactly “d(r)” interrupted subsequences (one of which –
the canonical circular sequence – is complete). For these subsequences, most of the properties
already explained in Section 1, plus Theorem 2.2, still remain valid.

In conclusion, we might even give free rein to the imagination and transpose some of the
questions [6, 9] (totally or partially) answered by Ripà [7] to the new sequences designed “ex-
novo” starting from the considerations we have made in these pages: thus we can define a new
sequence obtained taking into account only the odd figures of the circular one (considering all
the variations we have seen so far) plus a lot of others on the same line.

4 Several patterns belonging to the Smarandache
circular sequence

This is a small collection of the patterns of some prj that divides the corresponding terms of the
canonical circular sequence (1, 12, 21, 123, 231, 312, . . . ).

In the following charts, each dark square represents an element of the sequence that is
divisible by the given pr – remember that the generic term can be written as (p + 1) (p +

2) . . . (r − 1) r 1 2 3 . . . (p− 1) p – .
Often these patterns show some intrinsic regularity, that depends, for the most part, on the

chosen prj (a clear example is represented by pr6 := 13).

pr4:=7

Figure 6: d(r) = 2, d(p) = 1

Figure 7: d(r) = 3, d(p) = 1
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Figure 8: d(r) = 3, d(p) = 2

Figure 9: d(r) = 3, d(p) = 3
Figure 10: d(r) = 4, d(p) = 1
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pr5:=11

Figure 11: d(r) = 2, d(p) = 1

Figure 12: d(r) = 3, d(p) = 2
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Figure 13: d(r) = 3, d(p) = 3

Figure 14: d(r) = 4, d(p) = 1 Figure 15: d(r) = 4, d(p) = 2
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Figure 16: d(r) = 4, d(p) = 3

Figure 17: d(r) = 4, d(p) = 4
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pr6:=13

Figure 18: d(r) = 2, d(p) = 2
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Figure 19: d(r) = 3, d(p) = 2
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Figure 20: d(r) = 3, d(p) = 3
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