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Abstract: Integer structure analysis within the framework of modular rings is used to show 
that the formation of primitive (or “reduced”) Pythagorean triples depends on certain 

characteristics with these rings. Only integers in the Class 41  of the modular ring Z4 can 

produce primitive Pythagorean triples. Of these, a prime produces only one primitive 
Pythagorean triple, while composites produce the same number of primitive Pythagorean 

triples as their factors, provided the factors are square-free or are not elements of 43 .  Class 41  

integers were converted to the equivalent Z6 classes in order to isolate those divisible by 3.  
The numbers of primitive Pythagorean triples in various ranges were estimated and compared 
with the elder Lehmer’s estimates. The results provide a neat link between the number of 
primitive Pythagorean triples and the number of primes in the given interval. It was also shown 
why the major component of a primitive Pythagorean triple is the only component which 
cannot have 3 as a factor. 
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1 Introduction 

Despite being studied over many centuries, Pythagorean triples still have aspects not yet fully 
explored. Modular rings and the analysis of their inherent integer structures are particularly 
suited to such studies of the simple equation 

 222 bac   (1.1) 

We have recently shown [4] why primitive Pythagorean triples (pPts) always have one 
component with a factor of 5, while one of the two minor components always has a factor of 3. 
The reason the major component does not have a factor of 3 when the triple is primitive comes 

from the fact that only integers in Class 41  of the Modular Ring Z4 (Table 1) can be a sum of 

squares: that is, 4r1 + 1 integers can equal a sum of squares whereas 4r3 + 3 cannot. Fermat 
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proved this and it also follows from the integer structure. Only Classes 40 , 41  contain even-

powered integers. Thus, with b even and a odd: c2  41 , b2  40 , a2  41 , [3]. Thus Equation 

(1.1) has the class structure 

444 101   

so c must be in 41 . Hence integers in Class 41  with 3 (3  43 ) as a factor cannot form a pPt 

and hence c cannot have 3 as a factor. 
 To illustrate this more clearly and analyse how pPts are distributed, we convert from Z4 

to Z6 (Table 2). The latter ring segregates odd integers with a factor of 3: all fall in Class 66  

(6r3 + 3, Table 2). 

f(r) 04r  14 1 r  24 2 r  34 3 r  Row 
Class 40  41  42  43  

0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 1. Rows of Z4 

f(r) 26 1 r  16 2 r  36r  16 4 r 26 5 r  36 6 r  
Row 

Class 61  62  63  64  65  66  

0 –2 –1 0 1 2 3 

1 4 5 6 7 8 9 

2 10 11 12 13 14 15 

3 16 17 18 19 20 21 

4 22 23 24 25 26 27 

5 28 29 30 31 32 33 

6 34 35 36 37 38 39 

7 40 41 42 43 44 45 

Table 2. Rows of Z6 

( 62  and 65  have no even powers:     6666 15,42  mm , m even) 

The integers of Class 41  fall in 62  (odd rows), 64  (even rows) and 66  (odd rows). This 

can be verified from 
c2 = 4R1 + 1 

where 
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In the latter case, although c can be a sum of squares (usually when some factors are 
powers), the triple formed is not primitive as we see in the next section. 

2 Distribution of primitive Pythagorean triples 

The major component c is always in 41  and is given by 

c = x2 + y2. 

The minor components are formed from 2xy (even) and |x2 – y2| (odd). Tables 3, 4 and 5 
illustrate how the pPts are distributed for the range up to c = 497. The primes have only one set 
of (x, y) values. The other integers have the same number of (x, y) pairs as the number of 
factors, except for squares which have one pair. Obviously a square is not a prime, so that 
primes have distinct characteristics. 

Integer Factors Factor Classes x, y Triples pPts 

5   2,1  5,4,3 

17   4,1  17,8,15 

29   2,5  29,20,21 

41   4,5  41,40,9 

53   2,7  53,28,45 

65 5,13 41 41  8,1  65,16,63 

   4,7  65,56,33 

77 7,11 43 43  -  - 

89   8,5  89,80,39 

101   10,1  101,20,99 

113   8,7  113,112,15 

125 5,5,5 41 41 41  2,11  125,44,117 

   10,5 125,100,75 (5,4,3) 

137   4,11  137,88,105 

149   10,7  149,140,51 

161 7,23 43 43  -  - 

173   2.13  173,52,165 

185 5,37 41 41  
4,13 
8,11 

 
185,104,153 
185,176,57 

197   14,1  197,28,195 
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Integer Factors Factor Classes x, y Triples pPts 

209 11,19 43 43  -  - 

221 13,17 41 41  14,5  221,140,171 

   10,11  221,220,21 

233   8,13  233,208,105 

245 5,7,7 41 43 43  14,7 245,196,147 (5,4,3) 

257   16,1  257,32,255 

269   10,13  269,260,69 

281   16,5  281,160,231 

293   2,17  293,68,285 

305 5,61 41 41  4,17  305,136,273 

   16,7  305,224,207 

317   14,11  317,308,75 

329 7,47 43 43  -  - 

341 11,31 43 43  -  - 

353   8,17  353,272,225 

365 5,73 41 41  2,19  365,76,357 

   14,13  365,364,27 

377 13,29 41 41  4,19  377,152,345 

   16,11  377,352,135 

389   10,17  389,340,189 

401   20,1  401,40,399 

413 7,59 43 43  -  - 

425 5,5,17 41 41 41  8,19  425,304,297 

   16,13  425,416,87 

   20,5 425,200,375 (17,15,8) 

437 19,23 43 43  -  - 

449   20,7  449,280.351 

461   10,19  461,380,261 

473 11,43 43 43  -  - 

485 5,97 41 41  22,1  485,44,483 

   14,17  485,476,93 

497 7,71 43 43  -  - 

Table 3. Pythagorean Triples – Class 62 (6r2 – 1), r2 odd 
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Integer Factors Factor Classes x, y Triples pPts 

13   2,3  13,12,5 

25 5,5 41 41  4,3  25,24,7 

37   6,1  37,12,35 

49 7,7 43 43  -  - 

61   6,5  61,60,11 

73   8,3  73,48,55 

85 5,17 41 41  6,7  85,84,13 

   2,9  85,36,77 

97   4,9  97,72,65 

109   10,3  109,60,91 

121 11,11 43 43  -  - 

133 7,19 43 43  -  - 

145 5,29 41 41  8,9  145,144,17 

   12,1  145,24,143 

157   6,11  157,132,85 

169 13,13 41 41  12,5  169,120,119 

181   10,9  181,180,19 

193   12,7  193,168,95 

205 5,41 41 41  6,13  205,156,133 

   14,3  205,84,187 

217 7,31 43 43  -  - 

229   2,15  229,60,221 

241   4,15  241,120,209 

253 11,23 43 43  -  - 

265 5,53 41 41  12,11  265,264,23 

   16,3  265,96,247 

277   14,9  277,252,115 

289 17,17 41 41  8,15  289,240,161 

301 7,43 43 43  -  - 

313   12,13  313.312.25 

325 5,5,13 41 41 41  18,1  325,36,323 

   6,17  325,204,253 

   10,15 325,300,125 (13,12,5) 
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Integer Factors Factor Classes x, y Triples pPts 

337   16,9  337,288,175 

349   18,5  349,180,299 

361 19,19 43 43  -  - 

373   18,7  373,252,275 

385 5,7,11 41 43 43  -  - 

397   6,19  397,228,325 

409   20,3  409,120,391 

421   14,15  421,420,29 

433   12,17  433,408,145 

445 5,89 41 41  18,11  445,396,203 

   2,21  445,84,437 

457   4,21  457,168,425 

469 7,67 43 43  -  - 

481 13,37 41 41  20,9  481,360,319 

   16,15  481,480,31 

493 17,29 41 41  22,3  493,132,475 

   18,13  493,468,155 

Table 4: Pythagorean Triples – Class 64 (6r4 + 1), r4 even 

Integer Factors Factor Classes x, y Triples pPts 

9 3,3 43 43     

21 3,7 43 43     

33 3,11 43 43     

45 3,3,5 43 43 41  6,3 45,36,27 5,4,3 

57 3,19 43 43     

69 3,23 43 43     

81 3,3,3,3, 43 43 43 43     

93 3,31 43 43     

105 5,3,7 41 43 43     

117 3,3,13 43 43 41     

129 3,43 43 43     

141 3,47 43 43     
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Integer Factors Factor Classes x, y Triples pPts 

153 3,3,17 43 43 41     

165 5,3,11 41 43 43     

177 3,59 43 43     

189 3,3,3,7 43 43 43 43     

201 3,67 43 43     

213 3,71 43 43     

225 5,5,3,3 41 41 43 43  12,9 225,216,63 (25,24,7) 

237 3,79 43 43     

249 3,83 43 43     

261 3,3,29 43 43 41  6,15 261,180,189 (29,20,21) 

273 3,7,13 43 43 41     

285 5,3,19 41 43 43     

297 3,3,3,11 43 43 43 43     

309 3,103 43 43     

321 3,107 43 43     

333 3,3,37 43 43 41  18,3 333,108,315 (37,12,35) 

345 5,3,23 41 43 43     

357 3,7,17 43 43 41     

369 3,3,41 43 43 41  12,15 369,360,81 (41,40,9) 

381 3,127 43 43     

393 3,131 43 43     

405 5,3,3,3,3 41 43 43 43 43  18,9 405,324,243 (5,4,3) 

417 3,139 43 43     

429 3,11,13 43 43 41     

441 3,3,7,7 43 43 43 43     

453 3,151 43 43     

477 3,3,53 43 43 41  6,21 477,252,405 (53,28,45) 

489 3,163 43 43     

Table 5: Pythagorean Triples –Class 66  (6r3 + 1), r3 odd 

When the factors are in Class 43  no pPt is formed although (x, y) pairs appear with a com-

mon factor 3. Table 6 shows that the number of pPts is almost the same as the number of integers 

in a given range for 62  and 64  whereas 66  has no pPts since all integers there follow 3|c. 
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For the range to 497, the final row in Z4 equals 496 / 4 = 124. Thus there are 124 integers 
in this range (only one class being used for Z4). For Z6, 124 / 3 yields the approximate number 

of integers (Table 6) in a class. Since 66  has no pPts we can estimate that the number of pPts is 

around 83 (2  124 / 3), whereas it is 80. 

Class No. of integers No. of triples No. of pPts No. of primes 

64  41 1 40 21 

62  42 3 40 23 

63  41 7 0 0 

Total 124 11 80 44 

Table 6: Number comparisons 

 Since the ratio of integers to pPts is constant for 100, 200, 300, 400 and 500 ranges, we 
can estimate that for 1000, R1 = 250, so that the number of pPts is around 167 (2  250 / 3). In 
fact, the elder Lehmer proved that that the number of pPts with c < X is approximately (X / 2π) 
[2]. This yields 79.6 for X = 500 which compares favourably with the 80 found above. For 
X = 1000, the estimate is 159.2.  
 Another equation used by Lehmer to predict the number of pPts, M, is 

M = (X ln2) / π2 

in which X is the perimeter of the last pPt in the range. For example, with c = 997 (a prime), 
the perimeter of the pPt is (997 + 372 + 925) = 2294, so that M = 161, which is similar to the 
result from the previous formula. Our rough estimate tends to yield a number which is about 
4% higher. 

3 Concluding comments 

The primes (Table 6) contribute more than half the total. This provides a link between the 

number of primes (in 41 ) and the pPts in the range. 

 Of relevance too is that Hall [1] proved that (a, b, c) from Equation (1.1) is a pPt iff  

(a, b, c) = (3, 4, 5) M 

 in which M is a finite product of the unimodular matrices U, A, D defined by 
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