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Abstract: The Inclusion-Exclusion (I.E.) principle is an important counting concept in com-
binatorics. It is also very important in the study of the distribution of prime numbers. In this
paper, we introduce an equivalent - and in some cases a relatively easier to apply - form of the
concept. We also provide some applications.
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1 Introduction

Given a set X , let |X| be the cardinality of X . Throughout this paper, the set X is non-empty,
unless otherwise stated. Suppose Ai ⊆ X, (1 ≤ i ≤ n; i, n ∈ N) are distinct subsets of X . We
can consider the elements of Ai as those elements of X that satisfy some given property K(i).
Naturally, one may want to know the value of∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ . (1)

If we fall on the Inclusion-Exclusion principle, we have∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

|Ai1 ∩ Ai2 ∩ . . . ∩ Aik |. (2)

It is clear from the right-hand side of the equation in (2) that the I.E. principle is useful if we
have an easy way of evaluating the value of

n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

|Ai1 ∩ Ai2 ∩ . . . ∩ Aik |. (3)
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Unfortunately, this is not possible all the time, and in pratice we are usually forced to resort to
approximation techniques that allow us to estimate the value of |∪ni=1Ai| instead. Traditionally,
we are interested in upper or lower bounds of | ∪ni=1Ai| and even in this case, the results we get
are not really what we desired at first. There are many versions of the I.E. principle available
but all of them suffer from the existence of the object (−1)k, where k is a non-negative integer.
The presence of (−1)k in the right-hand side of (2) means that some background cancellation
must take place for the equality to work. This is the main reason why it is difficult to apply the
identity(2) in many instances where the value of n is large. For small values of n, there are not
many +(s) and −(s) to keep track of and so the I.E. principle works very well.
The purpose of this paper is the introduction of a form of the I.E. principle that gets around the
problem associated with managing the background cancellations associated with (2). We begin
with some basic definitions and notations. The set P shall denote the set of prime numbers and
p is reserved for primes. We shall also use

[m] = {1, 2, 3, . . . ,m}

and
Sm = {f : [m]→ [m]|f is a bijection},

where m is a positive integer. Now, a little modification to the equation in (2) gives∣∣∣∣∣X\
n⋃
i=1

Ai

∣∣∣∣∣ = |X| −
n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

|Ai1 ∩ Ai2 ∩ . . . ∩ Aik |. (4)

That is, |X\ ∪ni=1 Ai| is the number of elements of X that do not belong to | ∪ni=1 Ai|. In the
next section, we will provide an alternative way to evaluate | ∪ni=1 Ai|.

1.1 Another way to evaluate | ∪ni=1 Ai|
Let σ ∈ Sm, where m ∈ N and A1, A2, . . . , An distinct subsets of X . Define

NG
X (σ(1)) = {y ∈ X|y ∈ Aσ(1)},

NG
X (σ(1), σ(2)) = {y ∈ X\NG

X (σ(1))|y ∈ Aσ(2)}

and in general

NG
X (σ(1), σ(2), . . . , σ(r)) = {y ∈ X\

r−1⋃
j=1

NG
X (σ(1), . . . , σ(j))|y ∈ Aσ(r)};

for each r(1 ≤ r ≤ n), where G = {A1, A2, . . . , An}. In most cases where we use G without
explanation, one should deduce the meaning from the context. With these definitions, we have
the following result.
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Lemma 1. Let A1, A2, . . . , An be distinct subsets of some non-empty set X . The following
statements holds for each σ ∈ Sn, n ∈ N.
(i)

n⋃
i=1

Ai =
n⋃
i=1

NG
X (σ(1), σ(2), . . . , σ(i)),

(ii) ∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
n⋃
i=1

NG
X (σ(1), σ(2), . . . , σ(i))

∣∣∣∣∣ ,
where G = {A1, A2, . . . , An}.

Proof. (i) We prove the case n = 2.
Claim: A1 ∪ A2 = NG

X (σ(1)) ∪ NG
X (σ(1), σ(2)). This is easy, since NG

X (σ(1)) is the set of
elements of A1∪A2 that belongs to Aσ(1) and NG

X (σ(1), σ(2)) is the set of elements of A1∪A2

that belongs to (A1 ∪ A2)\Aσ(1) and Aσ(2). But

(A1 ∪ A2)\Aσ(1) = ((A1 ∪ A2)\Aσ(1)) ∩ Aσ(2)

and so the result follows. The general case follows easily by applying the inductive process on
n.
(ii) This follows directly from the statement in (i).

The statement in Lemma 1 is equivalent - in a way - to the I.E. principle. However, since
we do not have to worry about double-counting, one can refer to Lemma 1 as the Exclusion
principle. The following equality is easy to astablish.∣∣∣∣∣X\

n⋃
i=1

Ai

∣∣∣∣∣ = |X| −

∣∣∣∣∣
n⋃
i=1

NG
X (σ(1), σ(2), . . . , σ(i))

∣∣∣∣∣ = |X| −
n∑
i=1

|NG
X (σ(1), σ(2), . . . , σ(i))|.

(5)
It is easy to see that∣∣∣∣∣

n⋃
i=1

NG
X (σ(1), σ(2), . . . , σ(i))

∣∣∣∣∣ =
n∑
i=1

|NG
X (σ(1), σ(2), . . . , σ(i))|

is ’much easier’ to work with than
n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

|Ai1 ∩ Ai2 ∩ . . . ∩ Aik |,

even though in most cases, it is generally difficult to determine the exact values of both quanti-
ties. We present a simple example to verify the ’Exclusion-Principle’.

Example 2. Let X = {41, 42, 43, . . . , 50}, A = {x ∈ X : 2|x} and B = {x ∈ X : 3|x}. Set
G = {A,B}, then

A ∪B = NG
X (A) ∪NG

X (A,B) = NG
X (B) ∪NG

X (B,A).
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We have NG
X (A) = {42, 44, 46, 48, 50} and NG

X (A,B) = {45} and so

NG
X (A) ∪NG

X (A,B) = {42, 44, 45, 46, 48, 50}.

Similarly, NG
X (B) = {42, 45, 48} and NG

X (B,A) = {44, 46, 50} and so

NG
X (B) ∪NG

X (B,A) = {42, 44, 45, 46, 48, 50}.

In the next section, we will use the I.E. principle to provide alternative proofs to some
number theoritical problems.

2 Application to the distribution of prime numbers

Let x ∈ N and define X(x) = [1, x] ∩ N = {1, 2, 3, . . . , x} for each x ∈ N and

A = {p1, p2, . . . , pn|p1 < p2 < · · · < pn|pi, p2, p3, . . . , pn ∈ P}.

Define
S∗(A,X(x)) = |{a ∈ X(x)| gcd(a,

∏
p∈A

p) > 1}|. (6)

We have

S∗(A,X(x)) =
n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

∣∣∣AX(x)
i1
∩ AX(x)

i2
∩ · · · ∩ AX(x)

ik

∣∣∣ , (7)

where AX(x)
i1
∩ AX(x)

i2
∩ · · · ∩ AX(x)

ik
= {y ∈ X(x)| gcd(y, pij) > 1,∀j(1 ≤ j ≤ k)}, for each

k. In the setting above, we chose to avoid the Möbius function. Related to the equality in (7) is
the following statement;

S(A,X(x)) = |X(x)| −
n∑
i=1

(−1)k+1
∑

1≤i1<...<ik≤n

∣∣∣AX(x)
i1
∩ AX(x)

i2
∩ · · · ∩ AX(x)

ik

∣∣∣ , (8)

In practice, it is natural to assume that∣∣∣AX(x)
i1
∩ AX(x)

i2
∩ · · · ∩ AX(x)

ik

∣∣∣ = g(i1, i2, . . . , ik)|X(x)|+ Error(i1, i2, . . . , ik) (9)

for some function g : 0 ≤ g(i1, i2, . . . , ik) ≤ 1 and then develop techniques for managing the
cummulative error created when we substitute the expression in (9) into the equations in (7) or
(8). Various methods in sieve theory have been developed as a result. We will deal with this
problem in a slightly different way – using the Exclusion principle. We proceed as follows. Let
σ ∈ Sn and A,X(x); sets defined in the beginning of this section. Set

Ai = {y ∈ X(x) : pi|y}, G = {A1, A2, . . . , An}

UG
X(x)(σ(1)) =

⌈
|X(x)|
pσ(1)

⌉
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and

UG
X(x)(σ(1), σ(2), . . . , σ(k)) =

⌈
|X(x)| −

∑k−1
i=1 U

G
X(x)(σ(1), σ(2), . . . , σ(r))

pσ(k)

⌉
, (10)

∀k(1 ≤ k ≤ n). Furthermore, we have

UG
X(x)[σ] =

n∑
s=1

UG
X(x)(σ(1), . . . , σ(s)), (11)

for each σ ∈ Sn. The expression in (11) varies with σ ∈ Sn and so it is natural to define

U(G,X(x)) = max{UG
X(x)[σ] : σ ∈ Sn}. (12)

We present an example to shed additional light on the definitions above.

Example 3. Let X(10) = {1, 2, 3, . . . , 10} and A = {2, 3, 5}, then we have
(i) σ = (2, 3, 5);

UG
X(10)[σ] = UG

X(10)(2)+UG
X(10)(2, 3)+UG

X(10)(2, 3, 5) =

⌈
10

2

⌉
+

⌈
5

3

⌉
+

⌈
3

5

⌉
= 5+2+1 = 8.

(ii) σ = (2, 5, 3);

UG
X(10)[σ] = UG

X(10)(2)+UG
X(10)(2, 5)+UG

X(10)(2, 5, 3) =

⌈
10

2

⌉
+

⌈
5

5

⌉
+

⌈
4

3

⌉
= 5+1+2 = 8.

(iii) σ = (3, 2, 5);

UG
X(10)[σ] = UG

X(10)(3)+UG
X(10)(3, 2)+UG

X(10)(3, 2, 5) =

⌈
10

3

⌉
+

⌈
6

2

⌉
+

⌈
3

5

⌉
= 4+3+1 = 8.

(iv) σ = (3, 5, 2);

UG
X(10)[σ] = UG

X(10)(3)+UG
X(10)(3, 5)+UG

X(10)(3, 5, 2) =

⌈
10

3

⌉
+

⌈
6

5

⌉
+

⌈
4

2

⌉
= 4+2+2 = 8.

(v) σ = (5, 2, 3);

UG
X(10)[σ] = UG

X(10)(5)+UG
X(10)(5, 2)+UG

X(10)(5, 2, 3) =

⌈
10

5

⌉
+

⌈
8

2

⌉
+

⌈
4

3

⌉
= 2+4+2 = 8.

(vi) σ = (5, 3, 2);

UG
X(10)[σ] = UG

X(10)(5)+UG
X(10)(5, 3)+UG

X(10)(5, 3, 2) =

⌈
10

5

⌉
+

⌈
8

3

⌉
+

⌈
5

2

⌉
= 2+3+2 = 7.

Therefore, we have U(G,X(10)) = 8, where G = {AX(10)
2 , A

X(10)
3 , A

X(10)
5 } and

AX(10)
p = {y ∈ X(10) : p|y}, p ∈ A.

Notice that, using the I.E. principle, we should have

S∗(A,X(10)) = 8.

That is, U(G,X(10)) ≥ S∗(A,X(10)). This statement is true in general.
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Theorem 4. Let X(x) = {1, 2, 3, . . . , x} for some x ∈ N; A = {p1, p2, . . . , pn|p1 < p2 <

· · · p1, p2, . . . , pn ∈ P} and G = {AX(x)
pi : 1 ≤ i ≤ n}, then U(G,X(x)) ≥ S∗(A,X(x)).

The following statement is aslo important in measuring U(G,X(x)).

Lemma 5. Let X(x) = {1, 2, 3, . . . , x} for some x ∈ N; A = {p1, p2, . . . , pn|p1 < p2 <

· · · p1, p2, . . . , pn ∈ P} then U(G,X(x)) ≤ UG
X(x)[id] id : [n]→ [n] is the identity permutation.

Proof. Assume the definition of X(x), G and A. Suppose

UX(x)G[σ] ≤ UG
X(x)[id]

for all σ ∈ Sn. pid(i) ≤ pσ(i),∀i and so UG
X(x)[id] is more sensitive (first to increase, term by

term) to changes in x than UG
X(x)[σ]. Therefore, for r ∈ N, we should have UG

X(x+r)[id] ≥
UG
X(x+r)[σ] and this should be the case for any n.

Example 6. Suppose we want to find an upper bound for S∗({2, 5, 7}, X(20)). Since 2, 5 and
7 are all less than 20, we have UG

X(20)[(2, 5, 7)] as a fairly good estimate. In fact,

UG
X(20)[(2, 5, 7)] =

⌈
20

2

⌉
+

⌈
10

5

⌉
+

⌈
8

7

⌉
= 10 + 2 + 2 = 14.

The actual value is 13.

If we replace the ceiling function with the floor function in (10), we get

LGX(x)(σ(1)) =

⌊
|X(x)|
pσ(1)

⌋
and

LGX(x)(σ(1), σ(2), . . . , σ(k)) =

⌊
|X(x)| −

∑k−1
i=1 L

G
X(x)(σ(1), σ(2), . . . , σ(r))

pσ(k)

⌋
, (13)

∀k(1 ≤ k ≤ n). Furthermore, we have

LGX(x)[σ] =
n∑
s=1

LGX(x)(σ(1), . . . , σ(s)), (14)

for each σ ∈ Sn. The expression in (14) varies with σ ∈ Sn and so it is natural to define

L(G,X(x)) = min{LGX(x)[σ] : σ ∈ Sn}. (15)

With these definitions, it is easy to see that the following result should hold.

Theorem 7. Let X(x) = {1, 2, 3, . . . , x} for some x ∈ N; A = {p1, p2, . . . , pn|p1 < p2 <

· · · p1, p2, . . . , pn ∈ P} and G = {AX(x)
pi : 1 ≤ i ≤ n}, then

L(G,X(x)) ≤ S∗(A,X(x)) ≤ U(G,X(x)).

The inequality in this theorem is weak but useful.
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2.1 Some results

The definition of UG
X(x)[id] depends largely on the ceiling function. In order to use it to prove

some statements in prime number theory, we have to provide some basic results which will be
useful later.

Lemma 8. For each x > 0, n ∈ N, we have dnxe ≤ ndxe.

Proof. Let x > 0, n ∈ N. We have dnxe = dxe+
⌈
x− 1

n

⌉
+
⌈
x− 2

n

⌉
+ · · ·+

⌈
x− n−1

n

⌉
≤∑n

i=1dxe = ndxe.

The equality

dnxe = dxe+

⌈
x− 1

n

⌉
+

⌈
x− 2

n

⌉
+ · · ·+

⌈
x− n− 1

n

⌉
is called Hermite’s identity.

Lemma 9. For each σ ∈ Sn, n ∈ N, we have

UG
X(x)[σ] ≤ UG

X(x+r)[σ]

for all r, x ∈ N, (G fixed) and
UG
X(rx)[id] ≤ rUG

X(x)[id].

Proof. The first inequality follows easily since the components of σ are fixed and r > 0. The
second inequality follows by applying Lemma 7.

From Lemma 8, we have U(G,X(x+ r)) ≥ U(G,X(x)) in general, where G has its usual
meaning. Now, let x ∈ N, x > 1 and P(x) the set of prime numbers less than or equal to
x. We have S∗(P(x), X(x)) = x − 1 since gcd(1, p) = 1,∀p ∈ P(x). To show that there
are infinitely-many prime numbers, one must show that there exists some y > x such that
S∗(P(x), X(y)) < y−1. Alternatively, one can show that |S∗(P(x), X(x+r))−(x+r)| → ∞
as r → ∞. We shall now prove that there are infinitely-many prime numbers. The basic idea
is applicable to other problems concerning the distribution of primes.

Theorem 10. There are infinitely-many prime numbers.

Proof. Suppose there exists x ∈ N such that P(x) = P, then we should have

x− 1 = S∗(P(x), X(x)) ≤ UG
X(x)[id], (16)

where G = {AX(x)
p (x) : p ∈ P(x)} and AX(x)

p (x) = {z ∈ X(x) : p|z}. By assumption, one
should have

|UG
X(kx)[id]− kx| ≤ 1

for each k > 1. However, |UG
X(kx)[id] − kx| → ∞ as k → ∞. Therefore, P(x) = P is not

possible. There must be a prime number greater than x.
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The following result is also useful.

Lemma 11. For primes p1 < p2 < · · · < pn, we have

n∑
i=1

UG
X(x)(p1, p2, . . . , pi) ≤

n+1∑
k=2

US
X(x)(2, 3, . . . , k),

where G = {AX(x)
pi (x) : p1 < · · · < pn}, S = {AX(x)

J (x) : 2 ≤ J ≤ n+ 1}.

Therefore, if
n+1∑
k=2

US
X(x)(2, 3, . . . , k) < x− 1,

we can expect the interval [1, x] to contain at least n primes. If 2 = p1 < p2 < · · · <
pn < · · · is the sequence of prime numbers and X(x) = {1, 2, 3, . . . , x}, the expression∑n

i=1 U
G
X(x)(p1, p2, . . . , pn) can provide us with some insight into the distribution of prime

numbers. For example, if

n∑
i=1

UG
X(pn)(p1, p2, . . . , pi) ≥ pn − 1,

for some n then there exists r ∈ N such that
n∑
i=1

UG
X(pn+r)(p1, p2, . . . , pi) < pn + r − 1.

This means that there must be some prime number in the interval (pn, pn + r].

3 Conclusion

The equality ∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
n⋃
i=1

NG
X (σ(1), σ(2), . . . , σ(i))

∣∣∣∣∣ ,
where G = {A1, A2, . . . , An} is a nice way of looking at the I.E. principle and there might
be some interesting results and applications one might find later one. For example, there ap-
pear to some useful application to the following statements. Chebychev’s theorem concerning
the distribution of prime numbers within the interval (n, 2n], n ∈ N was first proved by P.L.
Chebyschev and simplified later by P. Erdós [6]. M. El. Bachraoui [4] extended Chebychev’s
theorem to the interval (2n, 3n]. Unfortunately, it is unclear how one can extend their results,
using their methods, to the interval (kn, (k + 1)n] for all n, k ∈ N, (1 ≤ k ≤ n+ 1).
Cramér [1] conjectured that every interval (n, n + f(n)log2n) contains a prime for some
f(n) → 1 as n → ∞ and Harman [3] proved, using sieve methods, that for almost all n,
the interval (n, n+ n

1
10

+e), e > 0 contains a prime number.
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Andrica Dorin [2] conjectured that the inequality

pn+1 ≤ pn + 2
√
pn + 1, ∀n ≥ 1 (17)

holds for all n ≥ 1. This inequality in (17) is checked, computationally, for n up to 1.3× 106.
Equally important is the conjecture proposed by Oppermann [5] which states that for each
x > 1, there exists prime numbers p, r satisfying x(x− 1) < p < x2 and x2 < r < x(x+ 1).

All the conjectures we have presented concern the distribution of prime numbers in short
intervals and this area of research is very important to Number Theorists and Mathematicians
in general. Using some properties of the Exclusion-principle and permutations, there appear
to be some reason to believe that we can say something positive about the conjectures listed
above. We are still studying possible connections.
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