
Notes on Number Theory and Discrete Mathematics
Vol. 18, 2012, No. 2, 42–55

On Tate-Shafarevich groups
of families of elliptic curves

Jerome T. Dimabayao and Fidel R. Nemenzo
Institute of Mathematics, University of the Philippines Diliman

Quezon City, Philippines
e-mails: jdimabayao@math.upd.edu.ph, fidel@math.upd.edu.ph

Abstract: We explicitly show that for some primes p ≡ 1 (mod 8), the elliptic curves y2 =

x3 − p2x and y2 = x3 − 4p2x have Tate-Shafarevich groups with nontrivial elements. This
involves obtaining Diophantine equations that violate the local-global principle.
Keywords: Elliptic curve, Congruent number, Rational point, Torsor, Mordell-Weil rank, Selmer
group.
AMS Classification: 11G05, 11D09.

1 Introduction

Consider the elliptic curves E : y2 = x3 − k2x, where k is a nonzero integer. Elliptic curves
with rational point T of order 2 such as E come attached with an isogeny φ : E −→ Ê (which
depends on the choice of T ). With T = (0, 0), we have Ê : y2 = x3 + 4k2x, if k is odd, or
Ê : y2 = x3 + k2

4
x, if k is even. The isogeny Ê −→ E will be denoted by ψ. We are interested

in the nontrivial rational points of E. These rational points can be recovered from the nontrivial
solutions N,M, e of the torsors

T (ψ)(b1) : N
2 = b1M

4 + b2e
4, b1b2 = −k2

and

T (φ)(b1) : N
2 = b1M

4 + b2e
4, b1b2 = 4k2 if k is odd or

k2

4
if k is even.

It can be shown that the least solution of the torsors above satisfy (M, e) = (N, e) = (b1, e) =

(b2,M) = (M,N) = 1.
We define the Selmer group S(ψ)(Ê/Q) as the subgroup of Q×/Q×2 containing the cosets

b1 (mod Q×2) such that the torsor T (ψ)(b1) is locally solvable everywhere. The subgroup of
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S(ψ)(Ê/Q) which consists of b1 (mod Q×2) such that the torsor T (ψ)(b1) has a global solution
will be denoted byW (Ê/Q). Similarly, we define S(φ)(E/Q) andW (E/Q). Finally, the quotient
of S(ψ)(Ê/Q) byW (Ê/Q) is defined as the ψ-part of the Tate-Shafarevich group X(Ê/Q)[ψ] of
Ê; while that of S(φ)(E/Q) byW (E/Q) is the φ-part of the Tate-Shafarevich group X(E/Q)[φ]

of E. The following exact sequences give a summary of the definitions above:

0 −→ W (Ê/Q) −→ S(ψ)(Ê/Q) −→X(Ê/Q)[ψ] −→ 0,

0 −→ W (E/Q) −→ S(φ)(E/Q) −→X(E/Q)[φ] −→ 0.

In particular, a nontrivial element of X(Ê/Q)[ψ] is given by a torsor T (ψ)(b1) that is every-
where solvable locally but not globally. Similarly for X(E/Q)[φ]. The groups X measures the
failure of the local-global principle for the elliptic curve Ek.

Determining global solvability of the torsors T (ψ)(b1) and T (φ)(b1) is necessary in computing
the Mordell-Weil rank or rank r of E using Tate’s formula:

2r+2 = #W (Ê/Q) ·#W (E/Q).

However, it is generally difficult to determine whether a Diophantine equation is globally
solvable or not. Thus making rank computation a tough one. But since #W (Ê/Q) |#S(ψ)(Ê/Q)

and #W (E/Q) |#S(φ)(E/Q), we see that computation of the Selmer groups allows us to obtain
an upper bound for r.

In this paper, we look at the elliptic curves Ep for p prime such that
p ≡ 1 (mod 16) with

(
2

p

)
4

6= 1; or

p ≡ 9 (mod 16) with
(
2

p

)
4

= 1.
(H)

These elliptic curves are of interest since they have associated torsors that violates the local-
global principle. We give families of equations by elementary means that produce nontrivial
elements of the Tate-Shafarevich groups for Ep, thus, showing that Ep have rank zero. We do the
same for the elliptic curves E2p : y

2 = x3 − 4p2x, where p ≡ 9 (mod 16).

2 The Selmer groups

Determining whether a torsor is locally solvable everywhere is more manageable due to the fol-
lowing result [3]:

Theorem 2.1. The equation
N2 = b1M

4 + b2e
4

has a nontrivial solution in Fp where p 6 | 2b1b2.
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Thus, the problem of local solvability everywhere reduces to the local solvability modulo a
finite set of primes, i.e. modulo the primes dividing the coefficients in the torsor. For the elliptic
curves Ep, the associated torsors are given by

T (ψ)(b1) : N
2 = b1M

4 + b2e
4, b1b2 = −p2

and
T (φ)(b1) : N

2 = b1M
4 + b2e

4, b1b2 = 4p2.

By applying the previous theorem and with the aid of Hensel’s Lemma, it is easy to show the
following:

Theorem 2.2. Let p ≡ 1 (mod 8) be prime. Then

S(ψ)(Êp/Q) = 〈−1, p〉 = W (Êp/Q) and S(φ)(Ep/Q) = 〈2, p〉 .

Similarly, for the elliptic curves E2p : y
2 = x3 − 4p2x, we have

Theorem 2.3. If p ≡ 1 (mod 8), then

S(ψ)(Ê2p/Q) = 〈−1, 2, p〉 and S(φ)(E2p/Q) = 〈p〉 .

3 Main results

3.1 The rank of the elliptic curve Ep for p ≡ 1 (mod 8)

From Theorem 2.2, we see that the rank of Ep is bounded by 0 and 2. The succeeding results will
help us determine the exact rank of Ep for primes p satisfying (H). To be able to get the exact
rank, we need to determine the number of elements of W (Ep/Q). This amounts to showing the
existence of nontrivial elements of the φ-part of the Tate-Shafarevich group X(Ep/Q)[φ].

3.1.1 Some lemmata

Lemma 3.1. Let p be a prime such that p ≡ 1 (mod 8). Write p = a2 − 2b2 = c2 + d2, with a, c
odd and b, d even. Then (

2

p

)
4

=

(
−2
a

)
= (−1)d/4

Proof. See page 156 of [1].

Lemma 3.1 says that if p = a2 − 2b2 ≡ 1 (mod 8), then

(
2

p

)
4

=

1 if a ≡ 1, 3 (mod 8)

−1 if a ≡ 5, 7 (mod 8)
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Also, if we write p = c2 + d2, then

(
2

p

)
4

=

1 if d ≡ 0 (mod 8)

−1 if d ≡ 4 (mod 8)

The following lemma is the well-known Pythagorean triple theorem. This result allows us to
enumerate all the Pythagorean triples. We will use this result to break down the the torsors into
degree 2 equations. Solvability of such equations is easier to investigate.

Lemma 3.2. The solutions of the equation

x2 + y2 = z2

with (x, y, z) = 1 and y even, are given by the formulas

x = s2 − t2, y = 2st, z = s2 + t2,

where s, t are integers with (s, t) = 1 and s 6≡ t (mod 2).

Lemma 3.3. Let a be odd, b even and c squarefree with c = a2 + b2. Moreover, assume that x is
odd, y is even, (x, y) = 1, and z ∈ Z such that x2 + y2 = cz2 = (a2 + b2)z2. Then we have

(ax+ by + cz)(ax− by − cz) = −c(y + bz)2

and
d = (ax+ by + cz, ax− by − cz) = 2�.

As a consequence, there exist integers u, v such that

by + cz ± ax = 2cu2

by + cz ∓ ax = 2v2

y + bz = 2uv.

Proof. See [5].

We present a similar version of the previous lemma:

Lemma 3.4. Let a be odd, b even and c squarefree with c = a2 − 2b2. Moreover, assume that x
is odd, y is even, (x, y) = 1, and z ∈ Z such that x2 − 2y2 = cz2 = (a2 − 2b2)z2. Then we have

(ax+ 2by + cz)(ax− 2by − cz) = 2c(y − bz)2

and
d = (ax+ 2by + cz, ax− 2by − cz) = 2�
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Proof. Set A = ax+ 2by + cz and B = ax− 2by − cz. We see that

AB = a2x2 − 4b2y2 − 4bcyz − c2z2

= a2(cz2 + 2y2)− 4b2y2 − 4bcyz − c2z2

= ca2z2 + (a2 − 2b2)(2y2)− 4bcyz − c2z2

= ca2z2 + 2cy2 − 4bcyz − c2z2

= c(a2z2 + 2y2 − 4byz − cz2)
= c(a2z2 + 2y2 − 4byz − a2z2 + 2b2z2)

= 2c(y − bz)2.

Since A and B are both even, and d | A + B = 2ax with ax odd, we have 2 || d. Let q be an
odd prime divisor of d. Then q | ax. Also, q | 2c(y − bz)2 which implies q | y − bz, because 2c is
squarefree.

If q | a, then q | 2(y − bz)(y + bz) = 2(y2 − b2z2) = x2 − a2z2 from which it follows that q |
x. Conversely, q | x implies q | az. But (x, z) = 1, so q | a.

Note that q 6 | y + bz. Otherwise we would get q | y + bz + y − bz = 2y and q | y, which
contradicts (x, y) = 1.

Now, let qk || a and ql || x. So q2k || a2 and q2l || x2. Consider the following cases:
If k < l, we get q2k || (x2 − a2z2) = 2(y + bz)(y − bz). Thus, q2k || y − bz, so q2k || d.
If k > l, we get q2l || d.
If k = l, then q2k | d, and since d | 2ax and q2k || ax, we obtain q2k || d.
Therefore, d is twice a square.

A result of the previous lemma is the existence of integers u, v such that

ax± 2by ± cz = 4cu2

ax∓ 2by ∓ cz = 2v2

y − bz = 2uv

or

ax± 2by ± cz = 2cu2

ax∓ 2by ∓ cz = 4v2

y − bz = 2uv

To show #W (Ep/Q) = 1, we need to show global unsolvability of the following torsors:

T (φ)(2) : N2 = 2M4 + 2p2e4

T (φ)(p) : N2 = pM4 + 4pe4

T (φ)(2p) : N2 = 2pM4 + 2pe4

Theorem 3.1. The torsor T (φ)(2) : N2 = 2M4 + 2p2e4 is not solvable in Z.

Proof. Suppose T (φ)(2) is solvable in Z with solution (N,M, e), such that (M, e) = (N, e) =

(2, e) = (2p2,M) = (M,N) = 1. Then there exists n ∈ Z such that

2n2 =M4 + p2e4. (1)

Clearly, M and e are both odd. Also note that p - n. Reducing (1) modulo 8 shows that n is
also odd.
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Let q be an odd prime such that q | n. Reducing (1) modulo q, we get
(
−1
q

)
= 1. Thus,

q ≡ 1 (mod 4) and consequently, n ≡ 1 (mod 4).
Squaring both sides of (1), we get

4n4 =M8 + 2p2M4e4 + p4e8.

We add −4p2M4e4 to both sides and work further on the previous equation to derive a
Pythagorean equation:

4n4 − 4p2M4e4 = M8 + 2p2M4e4 + p4e8 − 4p2M4e4

4(n4 − p2M4e4) = (M4 − p2e4)2

(n2)2 − (pM2e2)2 =

(
M4 − p2e4

2

)2

(n2)2 =

(
M4 − p2e4

2

)2

+ (pM2e2)2

The integers n2 and pM2e2 are relatively prime from the conditions about N , M and e stated
above.

Let d = (M4 − p2e4, pM2e2). Then d is odd and we have

d2|(M4 − p2e4)2 + 4p2M4e4 = (M4 + p2e4)2.

So d|M4 + p2e4 = 2n2. Because d is odd, d|n2, and thus d = 1. This shows that
M4 − p2e4

2
and

pM2e2 are relatively prime.
If d1 = (M4 − p2e4, n2), then d1 | 2n2. Thus,

d1|2n2 +M4 − p2e4 =M4 + p2e4 +M4 − p2e4 = 2M2.

Since n is odd, d1 - 2. So d1 | M2. Because (M,N) = (M, 2n) = 1, we must have d1 = 1.

Consequently,
(
M4 − p2e4

2
, n2

)
= 1.

The above arguments show that the quantities n2,
M4 − p2e4

2
and pM2e2 are mutually rela-

tively prime.

Since 16 | M4 − p2e4, we see that
M4 − p2e4

2
is even. Hence, by Lemma 3.2, there exist

relatively prime integers s and t such that

pM2e2 = s2 − t2, M4 − p2e4 = 4st, n2 = s2 + t2.

From the second equation, we have 4st = M4 − p2e4 ≡ 0 (mod 16). So st ≡ 0 (mod 4).

Since s2 − t2 ≡ 1 (mod 8) from the first equation above, we see that s must be odd and t ≡ 0

(mod 4).

Now, from the first and third equations, we derive pM2e2 = n2 − 2t2. Now writing p =

a2 − 2b2, with a odd, b even, and employing Lemma 3.4, we find integers u and v such that

an± 2bt± pMe = 4pu2

an∓ 2bt∓ pMe = 2v2

t− bMe = 2uv

or

an± 2bt± pMe = 2pu2

an∓ 2bt∓ pMe = 4v2

t− bMe = 2uv
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Consider the first system of equations. The sum and difference of the first two equations give

an = 2pu2 + v2 and 2bt+ pMe = 2pu2 − v2,

respectively. Consider the following cases:

1. If p ≡ 1 (mod 16) such that
(
2

p

)
4

= −1. From the remark succeeding Lemma 3.1, we

have a ≡ 5 or 7 (mod 8).

If a ≡ 5 (mod 8), then 2 || b. For if 4 | b, we get p = a2 − 2b2 ≡ 9 (mod 16). Now,
2pu2 + v2 = an ≡ 1 (mod 4) shows that u must be even and v odd. Reducing the third
equation modulo 4, we obtain

−bMe ≡ t− bMe = 2uv ≡ 0 (mod 4),

a contradiction since 2 || b and Me is odd.

On the other hand, when a ≡ 7 (mod 8), we see that 2pu2+ v2 = an ≡ 3 (mod 4). Thus,
u and v are both odd in this case. As a result,

Me ≡ 2bt+ pMe = 2pu2 − v2 ≡ 1 (mod 8).

Reduction of the equation pM2e2 = n2−2t2 modulo 16 gives n2 ≡ 1 (mod 16) or n ≡ ±1
(mod 8) But since n ≡ 1 (mod 4), we must have n ≡ 1 (mod 8). These give

7 ≡ an = 2pu2 + v2 ≡ 3 (mod 8),

a contradiction.

2. Suppose p ≡ 9 (mod 16) with
(
2

p

)
4

= −1. So that a ≡ 1 or 3 (mod 8).

This time, a ≡ 1 (mod 8) implies 2 || b. Arguing as before, we deduce u is even and v
is odd and arrive at a contradiction. If a ≡ 3 (mod 8), then u and v are both odd and
Me ≡ 1 (mod 8). Hence, reduction of pM2e2 = n2 − 2t2 modulo 16 and the fact that
n ≡ 1 (mod 4) leads us to n ≡ 5 (mod 8). So

7 ≡ an = 2pu2 + v2 ≡ 3 (mod 8),

again a contradiction.

With the same flow of arguments, we can show that the second system of equations will lead us
to contradictions. These contradictions show that T φ(2) does not admit a solution in Z.

Theorem 3.2. The torsor T (φ)(p) : N2 = pM4 + 4pe4 is not solvable in Z.

Proof. Assume it has a solution (N,M, e) ∈ Z3, with (M, e) = (N, e) = (p, e) = (4p,M) =

(M,N) = 1. Reduction modulo 8 of T (φ)(p) will show that e is even, M and n are odd. Also,
there exists an integer n such that

pn2 = (M2)2 + (2e2)2.
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Let q be a prime divisor of n. Then
(
−1
q

)
= 1 and so q ≡ 1 (mod 4). Hence, n ≡ 1 (mod 4).

Write p = c2 + d2, with c odd and d even. By Lemma 3.3, we can find integers u and v such that

2de2 + pn± cM2 = 2pu2

2de2 + pn∓ cM2 = 2v2

2e2 + dn = 2uv

Eliminating cM2, we obtain 2de2 + pn = pu2 + v2. Consider now the following cases:

1. Assume p ≡ 1 (mod 16) such that
(
2

p

)
4

= −1, that is d ≡ 4 (mod 8). Since e is even

and n ≡ 1 (mod 4), we have

2uv = 2e2 + dn ≡ 4 (mod 8)

=⇒ uv ≡ 2 (mod 4)

So one of u and v is odd and the other is even. The even one is congruent to 2 modulo 4.
Thus 2de2 + pn = pu2 + v2 ≡ 5 (mod 8), from which it follows that n ≡ 5 (mod 8) and
so n2 ≡ 9 (mod 16). Hence,

9 ≡ pn2 =M4 + 4e4 ≡ 1 (mod 16),

a contradiction.

2. Now suppose p ≡ 9 (mod 16) such that
(
2

p

)
4

= 1. This time we have d ≡ 0 (mod 8).

Then

2uv = 2e2 + dn ≡ 0 (mod 8)

=⇒ uv ≡ 0 (mod 4)

So, at least one of u and v is even. If one is odd, then 4 divides the other one. Thus,

n ≡ pn+ 2de2 = pu2 + v2 ≡ 0, 1 or 4 (mod 8).

Since n is odd, we must have n ≡ 1 (mod 8). So

9 ≡ pn2 =M4 + 4e4 ≡ 1 (mod 16),

again a contradiction.

Therefore, T (φ)(p) is not solvable in Z.

Theorem 3.3. The torsor T (φ)(2p) : N2 = 2pM4 + 2pe4 is not solvable in Z.

Proof. Again, we proceed by contradiction. Assuming we have a solution (N,M, e) ∈ Z3 with
(M, e) = (N, e) = (2p, e) = (2p,M) = (M,N) = 1, then it is clear that M and e are both odd.
We can find an integer n such that 2pn2 = M4 + e4. It is easy to see that n is odd. Let q be a
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prime divisor of n then reduction modulo q gives
(
−1
q

)
4

= 1. This means that q ≡ 1 (mod 8)

and so n ≡ 1 (mod 8). Note that

4p2n4 = M8 + 2M4e4 + e8

4p2n4 − 4M4e4 = M8 − 2M4e4 + e8

4(p2n4 −M4e4) = (M4 − e4)2

(pn2)2 =

(
M4 − e4

2

)2

+ (M2e2)2

SinceM and e are odd,
M4 − e4

2
is even. From the conditions (N,M) = (2p, e) = (2p,M) =

(N, e) = 1, we see that pn2 and M2e2 are relatively prime.
Let d = (pn2,M4 − e4). Then d is odd and d|2pn2 =M4 + e4. Hence,

d|M4 + e4 +M4 − e4 = 2M4

and
d|M4 + e4 − (M4 − e4) = 2e4.

The fact that d is odd and (M, e) = 1 implies that d = 1. Thus,
M4 − e4

2
and pn2 are relatively

prime.
Suppose d1 = (M4 − e4,M2e2). Again, d1 is odd and

d21|(M4 − e4)2 + 4M4e4 = (M4 + e4)2.

So d1|M4 + e4. Arguing as above, we obtain d1 = 1 and thus (
M4 − e4

2
,M2e2) = 1.

We have shown that the quantities
M4 − e4

2
,M2e2 and pn2 are pairwise relatively prime; thus

mutually relatively prime. By Lemma 3.2, there exist relatively prime integers s and t, with s 6≡ t

(mod 2) such that

M2e2 = s2 − t2, M4 − e4 = 4st, pn2 = s2 + t2.

Since M and e are odd, we have s2 − t2 = (Me)2 ≡ 1 (mod 8). Thus, s is odd and 4 | t.
Again, writing p = c2 + d2, with c odd and d even, and applying Lemma 3.3 to the third equation
above, we can find integers u and v such that

pn+ dt± cs = 2pu2

pn+ dt∓ cs = 2v2

t+ dn = 2uv

Eliminating cs, we get pn+ dt = pu2 + v2. Reduction modulo 8, we see that

u2 + v2 ≡ pu2 + v2 = pn+ dt ≡ 1 (mod 8).
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Hence, one of u and v is odd and the other is even. The even one is divisible by 4. In modulo 8,
we have

t+ d ≡ t+ dn = 2uv ≡ 0 (mod 8).

So t ≡ −d (mod 8).

Now, because (Me)2 = (s+ t)(s− t) and (M, e) = (s, t) = 1 we have

g2 = s+ t and h2 = s− t,

where g and r are odd and gh =Me.
Finally, we consider the following cases:

1. Suppose p ≡ 1 (mod 16) with
(
2

p

)
4

6= 1, that is d ≡ 4 (mod 8). Then t ≡ −d ≡ 4

(mod 8). The last two equations that we obtained give s ≡ 5 (mod 8), which implies
s2 ≡ 9 (mod 16). But

s2 ≡ s2 + t2 = pn2 ≡ 1 (mod 16).

2. If p ≡ 9 (mod 16) with
(
2

p

)
4

= 1, then 8|t. This time the last equations give s ≡ 1

(mod 8) and so s2 ≡ 1 (mod 16). But

s2 ≡ s2 + t2 = pn2 ≡ 9 (mod 16).

The two cases in consideration both result to a contradiction. This shows that the torsor
T (φ)(2p) cannot have a solution in Z.

The previous theorems show that 2Q×2, pQ×2, 2pQ×2 /∈ W (Ep/Q) and that the torsors
T (φ)(2), T (φ)(p) and T (φ)(2p) all define nontrivial elements of X(Ep/Q)[φ]. Hence, #W (E2p/Q) =

1.
Finally, Tate’s formula for the rank allows us to give the exact rank of Ep for the cases being

considered. The following theorem summarizes these:

Theorem 3.4. Let p be a prime that satisfies condition H. Then the elliptic curve Ep has rank
zero. In this case, the Tate-Shafarevich group of Ep has nontrivial elements.

3.2 The rank of the elliptic curve E2p for p ≡ 9 (mod 16)

From Theorem 2.3, we know that S(ψ)(Ê2p/Q) = 〈−1, 2, p〉 and S(φ)(E2p/Q) = 〈p〉 when p ≡ 1

(mod 8). Thus in this case, the rank of E2p is bounded by 0 and 2. The succeeding results will
help us determine the exact rank of E2p for p ≡ 9 (mod 16). To be able to get the exact rank,
we need to determine the number of elements of W (Ê2p/Q) and W (E2p/Q). We first deal with
the order of W (Ê2p/Q). We will use the following result which enables us to parametrize the
solutions of the equation x2 +2y2 = z2, in the same way that we can parametrize the Pythagoren
triples.
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Lemma 3.5. The solutions of the equation

x2 + 2y2 = z2 (2)

with (x, y, z) = 1 are given by the formulas

x = ±(s2 − 2t2), y = 2st, z = s2 + 2t2,

where s, t are integers with (s, t) = 1 and s is odd.

Proof. We first note that the solutions x, y and z of (2) are relatively prime in pairs. To show this,
let (x, y) = d > 1. Then some prime q divides z2. So that q divides z also, which contradicts the
assumption that (x, y, z) = 1. Thus, d = 1. Similarly, we see that (x, z) = (y, z) = 1 also.

Clearly, x and y cannot both be even. We claim that they cannot be both odd either. For if
they were, then z is also odd. So

3 = 1 + 2 ≡ x2 + 2y2 = z2 ≡ 1 (mod 8),

contradicting (2). Now, if x is even and y is odd, then z is even, contradiction to the fact that
(x, z) = 1. Thus, x must be odd and y must even. Hence, z is odd.

Write y = 2u, for some u ∈ Z. Substituting this equation in (2) gives

x2 + 8tu2 = z2,

or
8u2 = z2 − x2 = (z + x)(z − x).

Since x and z are both odd the two factors z + x and z − x are even, so we can write

2u2 =

(
z + x

2

)
·
(
z − x
2

)
,

where the factors on the right are integers. Moreover, they are relatively prime. If
(
z + x

2
,
z − x
2

)
=

d1 > 1, then d1 |
(
z + x

2
+
z − x
2

)
= z and d1 |

(
z + x

2
− z − x

2

)
= x. But (x, z) = 1, so

d1 = 1.
So, there exist relatively prime integers s and t such that st = u and

2t2 =
z + x

2
and s2 =

z − x
2

or
s2 =

z + x

2
and 2t2 =

z − x
2

,

where we may assume that s and t are positive.
For the first pair of equations, we have (2s, t) = 1 and adding those equations gives z =

s2 + 2t2, and subtracting them yields x = 2t2 − s2.
For the second pair, we have (2t, s) = 1 and getting the sum of the equations, we obtain

z = s2 + 2t2. Subtracting the equations gives x = s2 − 2t2.
In any case, s must be odd. Moreover, we have y = 2u = 2st for both cases. This completes

the proof of the lemma.
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Lemma 3.6. Let p ≡ 9 (mod 16). Then the equation

N2 = 2M4 − 2p2e4 (3)

is not solvable in Z.

Proof. If (3) is solvable in Z with solution (n,M, e) such that (N,M) = (N, e) = (M, e) =

(2, e) = (2p2,M) = 1, then there exists n ∈ Z such that

2n2 =M4 − p2e4. (4)

Clearly, M and e cannot be both even. From the conditions above, M and e are both odd.
Reducing (4) modulo 16 shows that 4 | n.

Let q be an odd prime such that q | e. Reducing (4) modulo q, we get
(
2

q

)
= 1. Thus,

q ≡ ±1 (mod 8) and consequently, e ≡ ±1 (mod 8). If r is an odd prime dividing M , then

we have
(
−2
r

)
= 1 by reducing (4) modulo r. This shows that every prime divisor of M is

congruent to 1 or 3 modulo 8. As a result, M ≡ 1 or 3 (mod 8).
We write (4) as

(pe2)2 + 2n2 = (M2)2.

Clearly, n and M2 are relatively prime. Since (2p2,M) = (M, e) = 1, we must have
(pe2,M2) = 1. If d is the greatest common divisor of pe2 and n then d2 is a divisor of (pe2)2+2n2.

Thus d2|M4 and d|M2. Since (M,N) = (M,n) = 1, we get d = 1. This shows that pe2, n and
M2 are mutually relatively prime.

By Lemma 3.5, there exists relatively prime integers s and t, with s odd such that

pe2 = ±(s2 − 2t2),

n = 2st,

M2 = s2 + 2t2.

Since 4 | n, we see that t is even.
The third equation can be written as s2 =M2−2t2. Plugging this into the first equation gives

pe2 = ±(M2 − 4t2).

The equation pe2 = −M2 + 4t2 does not hold. If it did, then

1 ≡ pe2 = −M2 + 4t2 ≡ −1 + 0 = −1 (mod 8),

contradiction.
Consider pe2 =M2 − 4t2. Reducing modulo 16, we see that

9 = 9 · 1 ≡ pe2 M2 − 4t2 ≡

1 if M ≡ 1 (mod 8)

9 if M ≡ 3 (mod 8).
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So, in order for the equation to hold, M ≡ 3 (mod 8).
Now write the equation as pe2 = (M + 2t)(M − 2t). Let d2 = (M + 2t,M − 2t). Then d2 |

(M + 2t+M − 2t) = 2M and d2 = (M + 2t− (M − 2t)) = 4t. Since the factors M + 2t and
M − 2t are both odd, d2 6 | 2. It follows that d2 |M and d2 | t. But t | n and (M,n) = 1. Hence,
d2 = 1. As a result, there exist relatively prime integers e1 and e2 with e1e2 = e such that

pe21 =M + 2t and e22 =M − 2t

or
e21 =M + 2t and pe22 =M − 2t

Consider the first pair. Reducing modulo 4, we see that

1 ≡ pe21 =M + 2t ≡ 3 + 0 = 3 (mod 4)

and
1 ≡ e21 =M − 2t ≡ 3− 0 = 3 (mod 8).

A similar argument shows that the second pair will also lead us to contradiction. These con-
tradictions show that there are no integers N ,M and e that satisfy (3).

We now count the elements of the group W (E2p/Q). There is only one torsor to consider,
T (φ)(p). The following lemma shows global nonsolvability of this torsor.

Lemma 3.7. If p ≡ 9 (mod 16), then the equation

N2 = pM4 + pe4 (5)

has no solution in Z.

Proof. Suppose the triple (N,M, e) ∈ Z satisfies (5) with (M, e) = 1. Then there exists an
integer n such that pn2 =M4 + e4.

Clearly, M and e cannot be both even. If M and e are both odd, then n must be even and we
have

2 ≡M4 + e4 = pn2 ≡ 0 or 4 (mod 16),

which leads to a contradiction.
Thus, M and e must be of different parities. By symmetry, assume M is odd and e is even.

So that n is odd. Meanwhile, note that n 6= 1. Otherwise, we get

9 ≡ p =M4 + e4 ≡ 1 + 0 = 1 (mod 16).

Let q be an odd prime dividing n. As q |M ⇔ q | e and M is relatively prime to e, q -Me.
Reducing the equation modulo q, we obtain

M4 + e4 = pn2 ≡ 0 (mod q).
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Hence,
(
−1
q

)
4

= 1, which implies that q ≡ 1 (mod 8).

This means that every prime divisor of n is 1 modulo 8. Thus, n ≡ 1 (mod 8) and pn2 ≡
9 (mod 16). But this contradicts M4 + e4 ≡ 1 (mod 16) which completes the proof of our
assertion.

Theorem 3.5. If p ≡ 9 (mod 16), the elliptic curve E2p has rank zero with nontrivial element in
the Tate-Shafarevich group.

Proof. Lemma 3.6 shows that 2 /∈ W (Ê2p/Q) and that the torsor T (ψ)(2) defines a nontriv-
ial element of X(Ê2p/Q)[ψ]. Since −1 and 2p are in the group W (Ê2p/Q), we can see that
−2,±p /∈ W (Ê2p/Q). Hence, #W (Ê2p/Q) = 4. With Lemma 3.7, we obtain a nontrivial el-
ement of X(E2p/Q)[φ] and #W (E2p/Q) = 1. Applying Tate’s formula for the rank, we get a
zero rank for E2p as stated.
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