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1 Introduction

Consider the elliptic curves F : y?> = 23 — k?z, where k is a nonzero integer. Elliptic curves
with rational point 7" of order 2 such as £ come attached with an isogeny ¢ : £ — E (which
depends on the choice of 7). With T = (0,0), we have E : y? = 23 + 4k2z, if k is odd, or
E: y? =23+ %2:1:, if £ is even. The isogeny E — E will be denoted by . We are interested
in the nontrivial rational points of E. These rational points can be recovered from the nontrivial
solutions IV, M, e of the torsors

T (by) : N? = by M* + bye?, biby = —k?

and
2

k
TO(by) : N? = by M* + bye?, biby = 4k? if k is odd or - if kis even.

It can be shown that the least solution of the torsors above satisfy (M,e) = (N,e) = (by,e) =
(by, M) = (M,N) = 1.

We define the Selmer group S W(E\ /Q) as the subgroup of Q*/Q*? containing the cosets
by (mod Q*?) such that the torsor 7¥)(b;) is locally solvable everywhere. The subgroup of
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S (W(E /Q) which consists of b, (mod Q*2) such that the torsor 7*)(b;) has a global solution
will be denoted by W (E/Q). Similarly, we define S (E/Q) and W (E/Q). Finally, the quotient
of SW)(E /Q) by W (E/Q) is defined as the 1)-part of the Tate-Shafarevich group III(E /Q)[¢)] of
E; while that of S (E/Q) by W (E/Q) is the ¢-part of the Tate-Shafarevich group II1(E/Q)][¢]
of E. The following exact sequences give a summary of the definitions above:

0 — W(E/Q) — SW(E/Q) — LI(E/Q)[¢] — 0,

0 — W(E/Q) — S9(E/Q) — II(E/Q)[¢] — 0.

In particular, a nontrivial element of III(£/Q)[] is given by a torsor 7*)(b;) that is every-
where solvable locally but not globally. Similarly for III(£/Q)[¢]. The groups III measures the
failure of the local-global principle for the elliptic curve Ej.

Determining global solvability of the torsors 7*)(b;) and 7(®)(b,) is necessary in computing
the Mordell-Weil rank or rank r of E using Tate’s formula:

22 = 4W(E/Q) - #W (E/Q).

However, it is generally difficult to determine whether a Diophantine equation is globally
solvable or not. Thus making rank computation a tough one. But since #W(E /Q) | #S®) (E /Q)
and #W (E/Q) | #5@) (E/Q), we see that computation of the Selmer groups allows us to obtain
an upper bound for 7.

In this paper, we look at the elliptic curves £, for p prime such that

2
p=1 (mod 16) with (—) # 1; or
5 (H)
2
p=9 (mod 16) with (—) = 1.
D4

These elliptic curves are of interest since they have associated torsors that violates the local-
global principle. We give families of equations by elementary means that produce nontrivial
elements of the Tate-Shafarevich groups for £, thus, showing that £, have rank zero. We do the
same for the elliptic curves Ey, : y? = x — 4p*x, where p = 9 (mod 16).

2 The Selmer groups

Determining whether a torsor is locally solvable everywhere is more manageable due to the fol-
lowing result [3]:

Theorem 2.1. The equation
N2 = b1M4 + b2€4

has a nontrivial solution in F,, where p } 2b,b,.
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Thus, the problem of local solvability everywhere reduces to the local solvability modulo a
finite set of primes, i.e. modulo the primes dividing the coefficients in the torsor. For the elliptic
curves I, the associated torsors are given by

T(¢)(b1) c N? = by M* + bye?, biby = —p?

and
T (b)) : N? = by M* + bye?, biby = 4p°.

By applying the previous theorem and with the aid of Hensel’s Lemma, it is easy to show the
following:

Theorem 2.2. Let p = 1 (mod 8) be prime. Then
SUN(E,/Q) = (~1,p) = W(E,/Q) and SO(E,/Q) = (2,p).
Similarly, for the elliptic curves Ey, : y? = x3 — 4p*x, we have

Theorem 2.3. Ifp =1 (mod 8), then

SO(By/Q) = (-1,2p)  and  S9(Ey/Q) = ().

3 Main results

3.1 The rank of the elliptic curve £, for p = 1 (mod 8)

From Theorem 2.2, we see that the rank of £}, is bounded by 0 and 2. The succeeding results will
help us determine the exact rank of £, for primes p satisfying (H). To be able to get the exact
rank, we need to determine the number of elements of W (E,/Q). This amounts to showing the
existence of nontrivial elements of the ¢-part of the Tate-Shafarevich group I1I(E,/Q)[¢].

3.1.1 Some lemmata

Lemma 3.1. Let p be a prime such that p = 1 (mod 8). Write p = a*> — 20* = ¢* + d?, with a, ¢

odd and b, d even. Then
(3,3
PJy a

Proof. See page 156 of [1]. ]

Lemma 3.1 says thatif p = a® — 20> = 1 (mod 8), then

p

(2) 1 ifa=1,3 (mod 8)
4 —1 ifa=5,7 (mod 8)
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Also, if we write p = ¢ + d?, then

p

(2) )1 ifd=0 (mod 8)
4 —1 ifd=4 (mod 8)

The following lemma is the well-known Pythagorean triple theorem. This result allows us to
enumerate all the Pythagorean triples. We will use this result to break down the the torsors into
degree 2 equations. Solvability of such equations is easier to investigate.

Lemma 3.2. The solutions of the equation

with (xz,y, z) = 1 and y even, are given by the formulas
T =s?—t% y = 2st, 2z =52+ 12

where s, t are integers with (s,t) = 1 and s  t (mod 2).

Lemma 3.3. Let a be odd, b even and c squarefree with ¢ = a* + b>. Moreover, assume that T is
odd, y is even, (x,y) = 1, and z € Z such that * + y* = cz* = (a* + b*)2*. Then we have

(azx + by + cz)(ax — by — cz) = —c(y + bz)?

and
d= (ax + by + cz,ar — by — cz) = 200.

As a consequence, there exist integers u, v such that

by +cz+taxr = 2cu
by +czFar = 20°
y+bz = 2uv.

Proof. See [5]. ]
We present a similar version of the previous lemma:

Lemma 3.4. Let a be odd, b even and c squarefree with ¢ = a® — 2b*>. Moreover, assume that x
is odd, y is even, (x,y) = 1, and z € Z such that z* — 2y* = cz? = (a* — 20*)z%. Then we have

(az + 2by + cz)(ax — 2by — cz) = 2c(y — bz)?

and
d = (ax + 2by + cz,ax — 2by — cz) = 200
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Proof. Set A = ax + 2by + cz and B = ax — 2by — cz. We see that

AB = d®2% — 4b%y? — dbcyz — 222
= a*(cz® + 2y%) — 4b*y? — dbcyz — *2°
= ca’2* + (a® — 2b%)(2y?) — dbeyz — 227
= ca?2? + 2cy® — dbeyz — *2?
= c(a®2* + 2y* — 4dbyz — ¢2?)
= c(a*2® + 2y — dbyz — a*2* + 2b°2%)
= 2c(y — bz)*.

Since A and B are both even, and d | A + B = 2ax with az odd, we have 2 || d. Let ¢ be an
odd prime divisor of d. Then q | az. Also, q | 2¢(y — bz)? which implies ¢ | y — bz, because 2c is
squarefree.

If ¢ | a, then ¢ | 2(y — bz)(y + bz) = 2(y? — b*2?) = 2% — a2 from which it follows that q |
x. Conversely, ¢ | x implies ¢ | az. But (z,z) = 1,s0 ¢ | a.

Note that ¢ [ y + bz. Otherwise we would get ¢ | y + bz + y — bz = 2y and ¢ | y, which
contradicts (z,y) = 1.

Now, let ¢ || a and ¢' || z. So ¢?* || a® and ¢* || 2. Consider the following cases:

If k < I, we get ¢* || (2% — a®2%) = 2(y + bz2)(y — bz). Thus, ¢** || y — bz, s0 ¢** || d.

If k> 1, we get ¢* || d.

If k = I, then ¢** | d, and since d | 2az and q2k || ax, we obtain ¢** || d.

Therefore, d is twice a square. [

A result of the previous lemma is the existence of integers w, v such that
ar £2by £ cz = 4deu® ar £2by £ cz = 2cu®
ar F2by Fez = 207 or ar F2by F ez = 4v?
y—bz= 2uv y—bz= 2uv
To show #W (E,/Q) = 1, we need to show global unsolvability of the following torsors:

TO(2): N* = 2M* + 2p%*
T@O(p): N* = pM* + 4pe’
TO(2p): N> = 2pM* + 2pe?
Theorem 3.1. The torsor T'*)(2) : N? = 2M* + 2p®e* is not solvable in 7.
Proof. Suppose T®)(2) is solvable in Z with solution (N, M, ¢), such that (M,e) = (N,e) =
(2,e) = (2p?, M) = (M, N) = 1. Then there exists n € Z such that
2n* = M* + pe’. (1)

Clearly, M and e are both odd. Also note that p t n. Reducing (1) modulo 8 shows that n is
also odd.
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-1
Let ¢ be an odd prime such that ¢ | n. Reducing (1) modulo ¢, we get (—) = 1. Thus,
q
g =1 (mod 4) and consequently,n =1 (mod 4).
Squaring both sides of (1), we get
4nt = M® + 2p> Me* + pled.

We add —4p?M4e* to both sides and work further on the previous equation to derive a
Pythagorean equation:

4n4 _ 4p2M4€4 — M8 + 2p2M4€4 + p4€8 _ 4p2M464
4(77,4 . p2M4€4) — <M4 o p2€4)2

(n?)? — (pM2e*)? = (My

ML — pz el 2
ep = () s parey

The integers n? and pM2e? are relatively prime from the conditions about NV, M and e stated
above.

Letd = (M* — p%e*, pM?¢e?). Then d is odd and we have

d2|(M4 —p264)2 + 4p2M4 4 — (M4 +p264)2.
M4 _ p2 64
2

So d|M* + p?e* = 2n?. Because d is odd, d|n?, and thus d = 1. This shows that and

pM?e? are relatively prime.
If dy = (M* — p?e*,n?), then d; | 2n?. Thus,

d|2n* + M* — p?e* = M* 4 p?e* + M* — p*e* = 2M°.
Since n is odd, d; 1 2. So d; | M?. Because (M, N) = (M,2n) = 1, we must have d; = 1.

M — p2eh
Consequently, (%,rﬂ) =1
M4 - p2 64
The above arguments show that the quantities 12, and pM?2e? are mutually rela-
tively prime.
M4 — 2ot
Since 16 | M* — p*e*, we see that Y ore

relatively prime integers s and ¢ such that

is even. Hence, by Lemma 3.2, there exist

pM?e* = s% — 12, M* — p?e* = 4st, n? = s* + 12

From the second equation, we have 4st = M* — p?e? = 0 (mod 16). So st = 0 (mod 4).
Since s — t = 1 (mod 8) from the first equation above, we see that s must be odd and ¢ = 0
(mod 4).

Now, from the first and third equations, we derive pM?e? = n? — 2t2. Now writing p =
a? — 2b?, with a odd, b even, and employing Lemma 3.4, we find integers u and v such that

an £ 2bt £ pMe = 4pu® an £ 2bt £ pMe = 2pu®
an F 2bt FpMe = 20* or an F 2bt FpMe = 4v*
t—bMe= 2uv t—bMe= 2uv
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Consider the first system of equations. The sum and difference of the first two equations give
an = 2pu? + v* and 20t + pMe = 2pu? — v?,
respectively. Consider the following cases:

2
l. If p =1 (mod 16) such that (—) = —1. From the remark succeeding Lemma 3.1, we
P/ 4

have a = 5 or 7 (mod 8).

If a = 5 (mod 8), then 2 || b. Forif 4 | b, we get p = a? — 2b*> = 9 (mod 16). Now,
2pu® + v* = an = 1 (mod 4) shows that u must be even and v odd. Reducing the third
equation modulo 4, we obtain

—bMe=t—bMe=2uwv=0 (mod 4),

a contradiction since 2 || b and Me is odd.

On the other hand, when a = 7 (mod 8), we see that 2pu® + v? = an = 3 (mod 4). Thus,
w and v are both odd in this case. As a result,

Me = 2bt + pMe = 2pu* —v* =1 (mod 8).

Reduction of the equation pM?e? = n?—2t* modulo 16 gives n? = 1 (mod 16) orn = +1
(mod 8) But since n = 1 (mod 4), we must have n = 1 (mod 8). These give

7=an=2pu’ 4+’ = (mod 8),
a contradiction.

2
2. Suppose p =9 (mod 16) with (—) = —1.Sothata = 1 or 3 (mod 8).
P/,

This time, a = 1 (mod 8) implies 2 || b. Arguing as before, we deduce u is even and v
is odd and arrive at a contradiction. If @ = 3 (mod 8), then u and v are both odd and
Me = 1 (mod 8). Hence, reduction of pM?e? = n? — 2¢* modulo 16 and the fact that
n =1 (mod 4) leadsus ton =5 (mod 8). So

7T=an=2pu® +v*=3 (mod 8),
again a contradiction.

With the same flow of arguments, we can show that the second system of equations will lead us
to contradictions. These contradictions show that 7%(2) does not admit a solution in Z. []

Theorem 3.2. The torsor T'9)(p) : N* = pM* + 4pe* is not solvable in Z.

Proof. Assume it has a solution (N, M,e) € Z*, with (M,e) = (N,e) = (p,e) = (4p, M) =
(M, N) = 1. Reduction modulo 8 of 7(®)(p) will show that e is even, M and n are odd. Also,
there exists an integer n such that

pn2 _ <M2)2 4 (262)2.
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q
Write p = ¢? + d?, with ¢ odd and d even. By Lemma 3.3, we can find integers u and v such that

-1
Let ¢ be a prime divisor of n. Then (—) =landsog =1 (mod 4). Hence,n =1 (mod 4).

2de* + pn £ cM? = 2pu?
2de* + pn FcM? = 20°
2e* +dn = 2uv

Eliminating cM?, we obtain 2de? + pn = pu? + v%. Consider now the following cases:

2
1. Assume p = 1 (mod 16) such that (—) = —1, thatis d = 4 (mod 8). Since e is even
DJy

andn =1 (mod 4), we have

2uv =2e*+dn = 4 (mod 8)
2

= w = (mod 4)

So one of v and v is odd and the other is even. The even one is congruent to 2 modulo 4.
Thus 2de? + pn = pu® + v? =5 (mod 8), from which it follows that n = 5 (mod 8) and
son? =9 (mod 16). Hence,

9=pn® =M*+4e*=1 (mod 16),
a contradiction.

2
2. Now suppose p = 9 (mod 16) such that (—) = 1. This time we have d = 0 (mod 8).
D/ 4
Then

2uv =2e*+dn = 0 (mod 8)
0 (mod 4)

— uv =
So, at least one of u and v is even. If one is odd, then 4 divides the other one. Thus,
n=pn+2de* =pu® +v* =0,1or4 (mod 8).
Since n is odd, we must have n = 1 (mod 8). So
9=pn®’=M*"+4e* =1 (mod 16),
again a contradiction.
Therefore, 7(®)(p) is not solvable in Z. O

Theorem 3.3. The torsor T®)(2p) : N? = 2pM* 4 2pe* is not solvable in Z.

Proof. Again, we proceed by contradiction. Assuming we have a solution (N, M, ¢) € Z? with
(M,e) = (N,e) = (2p,e) = (2p, M) = (M, N) = 1, then it is clear that M and e are both odd.
We can find an integer n such that 2pn? = M* + . It is easy to see that n is odd. Let ¢ be a
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-1
prime divisor of n then reduction modulo ¢ gives (—> = 1. This means that ¢ = 1 (mod 8)
9 /4

and son =1 (mod 8). Note that
4p*nt = MSB 4+ 2Mret + €8
ap’nt —AMet = M® —2Met + €8
4(p2n4 - M4€4) — <M4 - 64)2

e = (L5 v arey

4 4

M
Since M and e are odd, Te is even. From the conditions (N, M) = (2p,e) = (2p, M) =

(N,e) = 1, we see that pn® and M?e? are relatively prime.
Letd = (pn?, M* — e). Then d is odd and d|2pn? = M* + ¢*. Hence,

dM* + e* + M* — e* = 2M*

and
dM* 4 e* — (M* — e*) = 2¢*.
4_ 4

M
The fact that d is odd and (M, e) = 1 implies that d = 1. Thus, Te and pn? are relatively
prime.
Suppose d; = (M* — e*, M?e?). Again, d, is odd and

B(M* — ') + AM*et = (M + )2,

M4 _ 4
So d;|M* + e*. Arguing as above, we obtain d; = 1 and thus (Te, M?e?) = 1.
M4 _ 64
We have shown that the quantities ————, M?e? and pn? are pairwise relatively prime; thus

mutually relatively prime. By Lemma 3.2, there exist relatively prime integers s and ¢, with s # ¢
(mod 2) such that

M?e* = 5% —t%, M* — e = 4st, pn? = 5% 4+ 12

Since M and e are odd, we have s> — t? = (Me)? = 1 (mod 8). Thus, s is odd and 4 | ¢.
Again, writing p = ¢® + d?, with ¢ odd and d even, and applying Lemma 3.3 to the third equation
above, we can find integers u and v such that

pn+dttes = 2pu?

pn+dtFes = 20°
t+dn = 2uv

Eliminating cs, we get pn + dt = pu? + v%. Reduction modulo 8, we see that

W Hvi=put +oP =pn+dt =1 (mod 8).
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Hence, one of u and v is odd and the other is even. The even one is divisible by 4. In modulo 8§,
we have
t+d=t+dn=2uw =0 (mod8).

Sot = —d (mod 8).
Now, because (Me)? = (s +t)(s —t) and (M, e) = (s,t) = 1 we have

P =s+t and h?=s—t,

where g and r are odd and gh = Me.
Finally, we consider the following cases:

2
1. Suppose p = 1 (mod 16) with <—) # 1,thatis d = 4 (mod 8). Thent = —d = 4
D/,

(mod 8). The last two equations that we obtained give s = 5 (mod 8), which implies

s2=9 (mod 16). But

ss=s+t? =pn®=1 (mod 16).

2
2. If p = 9 (mod 16) with (—> = 1, then 8|¢. This time the last equations give s = 1
D/ 4
(mod 8) and so s> = 1 (mod 16). But

sS=s+t?=pn*=9 (mod 16).

The two cases in consideration both result to a contradiction. This shows that the torsor
T(9)(2p) cannot have a solution in Z.
O

The previous theorems show that 2Q*2 pQ*? 2pQ*?* ¢ W(E,/Q) and that the torsors
T©)(2), T (p) and T'¥)(2p) all define nontrivial elements of II1( E,/Q)[#]. Hence, #W (F,,/Q) =
1.

Finally, Tate’s formula for the rank allows us to give the exact rank of £, for the cases being
considered. The following theorem summarizes these:

Theorem 3.4. Let p be a prime that satisfies condition H. Then the elliptic curve E,, has rank

zero. In this case, the Tate-Shafarevich group of I, has nontrivial elements.

3.2 The rank of the elliptic curve F,, for p = 9 (mod 16)

From Theorem 2.3, we know that S®)(E,/Q) = (—1,2,p) and S (E,,/Q) = (p) whenp = 1
(mod 8). Thus in this case, the rank of F5, is bounded by 0 and 2. The succeeding results will
help us determine the exact rank of £y, for p = 9 (mod 16). To be able to get the exact rank,
we need to determine the number of elements of W(Egp /Q) and W (E5,/Q). We first deal with
the order of W(Egp /Q). We will use the following result which enables us to parametrize the
solutions of the equation x? + 2y? = 22, in the same way that we can parametrize the Pythagoren
triples.
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Lemma 3.5. The solutions of the equation
242 = 2 @)
with (z,y, z) = 1 are given by the formulas
rv=4(s* - 2t%), y=2st, z=s5"+2t
where s, t are integers with (s,t) = 1 and s is odd.

Proof. We first note that the solutions x, y and z of (2) are relatively prime in pairs. To show this,
let (x,y) = d > 1. Then some prime ¢ divides z°. So that ¢ divides z also, which contradicts the
assumption that (x,y, z) = 1. Thus, d = 1. Similarly, we see that (z, z) = (y, z) = 1 also.

Clearly, x and y cannot both be even. We claim that they cannot be both odd either. For if
they were, then z is also odd. So

3=14+2=2"+2 =2"=1 (mod 8),

contradicting (2). Now, if x is even and y is odd, then z is even, contradiction to the fact that
(x,z) = 1. Thus, z must be odd and y must even. Hence, z is odd.
Write y = 2u, for some u € Z. Substituting this equation in (2) gives

2?4 8tu? = 22,

or

Su? =22 —2? = (z + 7)(z — 7).

Since z and z are both odd the two factors z + x and z — x are even, SO we can write

w=(57) (%)

where the factors on the right are integers. Moreover, they are relatively prime. If (z _g :c’ z ; x) =
dy > 1, then d; | z—{—:c_i_z—:t = zand d; | SRS x. But (z,z) = 1, so
2 2 2 2
d1 - 1
So, there exist relatively prime integers s and ¢ such that st = u and
02 = 2T a2 = 20
2
or N
s? = : mand2t2: : :1:7
2 2

where we may assume that s and ¢ are positive.

For the first pair of equations, we have (2s,¢) = 1 and adding those equations gives z =
s? + 2t2, and subtracting them yields z = 2% — s%.

For the second pair, we have (2¢,s) = 1 and getting the sum of the equations, we obtain
z = s% + 2t2. Subtracting the equations gives z = s> — 2t2.

In any case, s must be odd. Moreover, we have y = 2u = 2st for both cases. This completes
the proof of the lemma. [
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Lemma 3.6. Let p =9 (mod 16). Then the equation
N? = 2M* — 2pet 3)
is not solvable in 7.

Proof. If (3) is solvable in Z with solution (n, M, e) such that (N, M) = (N,e) = (M,e) =
(2,e) = (2p*, M) = 1, then there exists n € Z such that

on? = M*— p2e4. “4)

Clearly, M and e cannot be both even. From the conditions above, M and e are both odd.
Reducing (4) modulo 16 shows that 4 | n.

2
Let ¢ be an odd prime such that ¢ | e. Reducing (4) modulo ¢, we get (—) = 1. Thus,
q
g = £1 (mod 8) and consequently, ¢ = +1 (mod 8). If 7 is an odd prime dividing M, then

-
congruent to 1 or 3 modulo 8. As aresult, M = 1 or3 (mod 8).

We write (4) as

we have <—> = 1 by reducing (4) modulo r. This shows that every prime divisor of M is

<p€2)2 + 2712 — (M2)2.

Clearly, n and M? are relatively prime. Since (2p?>, M) = (M,e) = 1, we must have
(pe?, M?) = 1.1f d is the greatest common divisor of pe? and n then d? is a divisor of (pe?)?+2n?.
Thus d?|M* and d|M?. Since (M, N) = (M,n) = 1, we get d = 1. This shows that pe?, n and
M? are mutually relatively prime.

By Lemma 3.5, there exists relatively prime integers s and ¢, with s odd such that

pe? = £(s% —2t%),
n = 2st,

M? = s* 2%

Since 4 | n, we see that ¢ is even.
The third equation can be written as s> = M? — 2¢2. Plugging this into the first equation gives

pe? = £(M? — 4t%).
The equation pe? = —M? + 4t? does not hold. If it did, then
l=p? = -—M*+4t>=—-1+0=—1 (mod 8),

contradiction.
Consider pe* = M? — 4t%. Reducing modulo 16, we see that

1 ifM=1 (mod )

=9.1=pe* M? —4t* =
9 ifM=3 (mod8).
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So, in order for the equation to hold, M = 3 (mod 8).

Now write the equation as pe? = (M + 2t)(M — 2t). Let dy = (M + 2t, M — 2t). Then d |
(M +2t+ M —2t) =2M and dy = (M + 2t — (M — 2t)) = 4t. Since the factors M + 2¢ and
M — 2t are both odd, ds [ 2. It follows that dy | M and ds | ¢t. But ¢ | n and (M, n) = 1. Hence,
ds = 1. As aresult, there exist relatively prime integers e; and e, with e;es = e such that

pel =M +2tand e3 = M — 2t

or
e2 = M + 2t and pe2 = M — 2t

Consider the first pair. Reducing modulo 4, we see that
l=pel=M+2t=3+0=3 (mod 4)
and
l=ei=M-2t=3-0=3 (mod 8).

A similar argument shows that the second pair will also lead us to contradiction. These con-
tradictions show that there are no integers N,/ and e that satisfy (3).
[]

We now count the elements of the group W (Es,,/Q). There is only one torsor to consider,
T @) (p). The following lemma shows global nonsolvability of this torsor.

Lemma 3.7. Ifp =9 (mod 16), then the equation

N? = pM* + pe* (5)
has no solution in 7.

Proof. Suppose the triple (N, M, e) € Z satisfies (5) with (M,e) = 1. Then there exists an
integer n such that pn? = M* + ¢*.

Clearly, M and e cannot be both even. If M and e are both odd, then n must be even and we
have

2=M*"+e*=pn*=0o0r4 (mod 16),

which leads to a contradiction.
Thus, M and e must be of different parities. By symmetry, assume M is odd and e is even.
So that n is odd. Meanwhile, note that n # 1. Otherwise, we get

9=p=M*'+e*=1+0=1 (mod 16).

Let ¢ be an odd prime dividing n. As ¢ | M < ¢ | e and M is relatively prime to e, ¢ f Me.
Reducing the equation modulo g, we obtain

M*+e*=pn*=0 (mod q).
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Hence, (—) = 1, which implies that ¢ = 1 (mod 8).
4

q
This means that every prime divisor of n is 1 modulo 8. Thus, n = 1 (mod 8) and pn? =
9 (mod 16). But this contradicts M?* + e* = 1 (mod 16) which completes the proof of our
assertion. [l

Theorem 3.5. If p = 9 (mod 16), the elliptic curve Es, has rank zero with nontrivial element in
the Tate-Shafarevich group.

Proof. Lemma 3.6 shows that 2 ¢ W(EA?QP /Q) and that the torsor 7¥)(2) defines a nontriv-
ial element of HI(EQP /Q)[¢]. Since —1 and 2p are in the group W(E2p /Q), we can see that
—2,4+p ¢ W(Egp/(@). Hence, #W(Ezp/(@) = 4. With Lemma 3.7, we obtain a nontrivial el-
ement of I1I(E,,/Q)[¢] and #W (E,,/Q) = 1. Applying Tate’s formula for the rank, we get a
zero rank for Ey, as stated. [
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