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Let a and b be positive coprime integers and denote by D(a, b) the set of prime numbers which 

are congruent to b modulo a. For a given set S  N write F(S) for the set of all quotients of 
elements of S.  

In 1993, Hobby and Silberger [1] proved that if  is the set of all prime numbers, then 

F( ) is dense in R+  [0, ).  As an open problem they asked for the generalization of this 

result to arithmetic progressions; that is, decide whether F(D(a, b)) is dense in R+. Two years 
later, Starni [2] claimed to answer Hobby and Silberger’s question in the affirmative, though it 
seems that their proof has a flaw. Indeed, if we write pa,b(n) for the n-th prime in D(a, b), Starni 
claimed that pa,b(n) ~ n log n which is false as we shall prove in the following lemma. 

Lemma. If pa,b(n) is as defined above, then pa,b(n) ~   ϕ(a) n log n, where ϕ(q) is Euler’s totient 

function. 

Proof. Denote by π(x; a, b) the number of primes up to x that are congruent to b modulo a. The 
prime number theorem for arithmetic progressions thus implies that 
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Taking logarithms and dividing by )(log , np ba  we obtain 
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Multiplying the two above limits together proves the lemma.  



57 

Note that Starni’s claim with this lemma, Starni’s prove goes through nicely. To make 
this paper self contained and a bit more interesting, we use the above lemma to give a simpler 
proof of the density of F(D(a, b)) is dense in R+. 

Theorem. We have F(D(a, b)) is dense in R+. 

Proof. Let [y] denote the integer part of the positive real number y. By the above lemma we 

have for a given real number x  + that 
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We note that this type of argument was suggested by M. Mendès France in his review 
of [1]. 
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