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1 Introduction 

The most important feature of Integer Structure Analysis (ISA) is the multifarious character of 
the structure of integers [3].  For instance, when the right-end-digit (RED) patterns or algebraic 
equations are involved, Z5 is the preferred modular ring because classes are RED specific and 
of mixed parity. The ring Z6 is preferred if divisibility or non-divisibility by 3 needs to be 
structurally distinguished as integers divisible by 3 occur in one class for each parity [3]. 

On the other hand, Z4 is particularly useful for analysis of the structure of π [8] and of 
power functions [5, 9], such as why Pythagorean triples always have factors of 3 in one of the 
minor components and 5 in one of the components [4, 6]. 

In this paper, we illustrate how the elements of rows of powers belong to different, and 
apparently conflicting, sequences. In particular, we analyse some aspects of Pythagorean triples. 

2 Rows of squares 

The structure of the Pythagorean equation in Z4 (Table 1) 

 222 bac +=  (2.1) 
may be summarised by: 
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• 41∈c  as this is the only Class to contain odd integers equal to a sum of squares; 
• one of the minor components, a or b, always has a factor of 3; 
• one of the components, a, b or c, always has a factor of 5; 
• the elements of the rows of the squares of the odd components are members of the 

sequence {6Dn} (where Dn are the pentagonal numbers) if the elements are not divisible 
by 3; 

• the elements of the rows of the squares of the odd components are members of the 
sequence {2 + 18Tn} (where Tn are the triangular numbers) if the elements are divisible 
by 3; 

• the elements of the rows of squares in general are members of Pellian-type sequences 
irrespective of whether the elements are divisible by 3 or not; 

• the even components cannot belong to 42 . 

f(r) 04r  14 1 +r 24 2 +r 34 3 +r  
Row 

Class 40  41  42  43  
0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 1. Rows of Z4 

Odd squares always belong to the Class 41  and the elements of the rows satisfy a non-
homogeneous form of a Pellian-type recurrence relation (2.2) with t = 2 and with suitable 
initial conditions (Table 2): 
 .2 11 tRRR iii +−= −+  (2.2) 

N 1 3 5 7 9 11 13 15 17 
N2  1 9 25 49 81 121 169 225 289 

Row 0 2 6 12 20 30 42 56 72 
i 0 1 2 3 4 5 6 7 8 

Table 2. Rows of odd squares 

Even squares 4
2 0∈N  with 40∈N  only. The elements of these rows satisfy (2.2) with 

t = 8. Thus, with ,14,4,14 /
1

2
0

2
1

2 +==+= RaRbRc  Equation (2.1) can be re-written as 

 ./
101 RRR +=  (2.3) 

Obviously the rows are compatible, which allows primitive Pythagorean triples (pPts) to 
form: 
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 ( ) ( ).422 111 −−− +−++=− jijikk RRRRRR  (2.4) 

For example, for pPt (24, 7, 25): 

,110,64,2
,132,100,6

111 ===
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kji

RRR
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and Equation (2.4) is then: 264 – 110 = 154 = 2(6 + 100 + 4) – (2 + 64). 

3 Rows of cubes 

We have seen the rows in relation to triangular and pentagonal numbers, but these do not 
display the incompatibility of these rows for triples. We shall look further at Pellian-type 
sequences with the aid of Tables 3 and 4 which give examples of the row structures in Classes 

41  and 40 , respectively. 
 

N 1 5 9 13 17 21 25 29 
N3 1 125 729 2197 4913 9261 15625 24389 

Row 0 31 182 549 1228 2315 3906 6097 
i 0 1 2 3 4 5 6 7 

Table 3. Cubes in Class 41  

Table 4. Even cubes 40∈  

A note which is not totally irrelevant here since it leads to related research with cubes is 
that 1728 is related to the Hardy-Ramanujan number, Ta(2) = 1728 + 1. This is famous for the 
story that when Hardy visited the ailing Ramanujan on one occasion he observed by way of 
starting the conversation that he had arrived in a cab numbered 1729 which seemed to be 
uninteresting. Ramanujan immediately stated that it was actually a very interesting number 
mathematically, being the smallest natural number representable in two different ways as a sum 
of two different cubes [1]: 

Ta(2) = 13 + 123 = 93 + 103; 

these “taxicab numbers”, Ta(n), are now defined as the smallest number that can be expressed 
as a sum of two positive algebraic cubes in n distinct ways. Thus, 

Ta(1) = 2 = 13 + 13, 

Ta(2) = 1729 = 13 + 123 = 93 + 103, 

Ta(3) = 87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143. 

N 2 4 6 8 10 12 14 16 18 
N3 8 64 216 512 1000 1728 2744 4096 5832 

Row 2 16 54 128 250 432 686 1024 1458 
i 0 1 2 3 4 5 6 7 8 
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Hardy and Wright [2] proved that such numbers exist for all positive integers n, but their 
proof makes no claims at all about whether the numbers they generate are the smallest possible 
and thus it cannot be used to find the actual value of Ta(n). 

We return to the Tables 3 and 4 and observe that for 41  the rows of the cube are given by 
the second order homogeneous recurrence relation 

 ( )14242 11 ++−= −+ iRRR iii ; (3.1) 

for even integers the rows of the cubes are given by the third order homogeneous recurrence 
relation 
 ( ) 123 112 ++−= −++ iiii RRRR ; (3.2) 

Even cubes 40∈  as 42  has no powers. 

For 43  the rows of the cubes are given by the second order homogeneous recurrence 
relation 
 ( )34242 11 ++−= −+ iRRR iii ; (3.3) 

Unlike the case with the squares, the rows of the odd and even cubes are incompatible. 
Hence the equation (3.4) is structurally impossible: 

 333 bac +=  (3.4) 

For example, the possible class structures are 
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or, in terms of the rows: 
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 (3.6) 

The patterns for the recurrence relations in (3.6) are 

 ( ) 12342424242 1111 ++−+×+−=×+− −+−− jjjkkii RRRkRRiRR . (3.7) 

 Obviously, the row structures on the left hand sides are incompatible with those on the 
right hand sides. This shows that, unlike the squares, the rows of an even plus odd cube yield a 
row structure that does not match that of a cube. 

4 Final comments 

The elements of the rows of higher odd powers are members of Pellian-type sequences which, 
again, are incompatible for even and odd integers.  For example, odd fifth powers have the row 
structure of the recurrence relation: 

 ( ) 4211 1,14480375 ClassrRRRR iiiii +−+−= −−+ ; (4.1) 
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However, elements in even rows do not seem to belong to recursive sequences which 
means that the rows are incompatible. The same applies to even powers with an odd factor in 
the power, such as (c2)3 = c6. 

Since elements of the rows of odd squares are also related to the triangular numbers Tn or 
pentagonal numbers Dn according to whether 3 does or does not divide N, respectively, it is not 
surprising that the triangular and pentagonal numbers also satisfy Pellian non-homogeneous 
recurrence relations:  
 12 11 +−= −+ nnn TTT  (4.2) 
 32 11 +−= −+ nnn DDD  (4.3) 

respectively, as particular cases of Equation (2.2). 
 Powers of 2n (n > 1) have been discussed previously [7] and a similar incompatibility 
exists; for triples of this type, the REDs are the important structural constraints [7]. Thus, ISA 
can simplify apparently complex systems by showing why certain equations are invalid.  It is a 
natural artefact of the multifarious nature of the structures themselves. 

References 

[1] Hardy, G. H. A Mathematician's Apology. (Foreword by C.P. Snow.) Cambridge: 
University Press, 1967. 

[2] Hardy, G. H., E. M. Wright. An Introduction to the Theory of Numbers, 3rd edition. 
London: Oxford University Press, 1954.  

[3] Leyendekkers, J. V., A. G. Shannon, J. M. Rybak. Pattern Recognition: Modular Rings 
and Integer Structure. North Sydney: Raffles KvB Monograph No. 9, 2007.  

[4] Leyendekkers, J. V., A. G. Shannon. Why 3 and 5 are always Factors of Primitive 
Pythagorean Triples. International Journal of Mathematical Education in Science & 
Technology. Vol. 42, 2010, 102–105. 

[5] Leyendekkers, J. V., A. G. Shannon. Rows of Odd Powers in the Modular Ring Z4. Notes 
on Number Theory and Discrete Mathematics. Vol. 16, 2010, No. 2, 24–32.  

[6] Leyendekkers, J. V., A. G. Shannon. Modular Rings and the Integer 3. Notes on Number 
Theory and Discrete Mathematics. Vol. 17, 2011, No. 2, 47–51.  

[7] Leyendekkers, J. V., A. G. Shannon. The Structure of Even Powers in Z3: Critical 
Structural Factors that Prevent the Formation of Even-powered Triples greater than 
Squares. Notes on Number Theory and Discrete Mathematics. Vol. 17, 2011, No. 3, 
26–30.  

[8] Leyendekkers, J. V., A. G. Shannon. The Structure of π. Notes on Number Theory and 
Discrete Mathematics. Vol. 17, 2011, No. 4, 61–68. 

[9] Leyendekkers, J. V., A. G. Shannon. The Modular Ring Z5. Notes on Number Theory and 
Discrete Mathematics, Vol. 18, 2012, No. 2, 28–33. 


