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Abstract: Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 +

Fn, for n ≥ 0. In this note, we find all solutions of the Diophantine equation

m1! · · ·mk!± 1 = Fm,

where 2 ≤ m1 ≤ · · · ≤ mk and m ≥ 3.
Keywords: Diophantine equation, Factorial, Fibonacci, Brocard-Ramanujan.
AMS Classification: Primary 11Dxx, Secondary 11B39.

1 Introduction

Recall that the factorial of a positive integer n, denoted by n!, is the product of all positive integers
less than or equal to n. The well-known Stirling’s formula (see [1, p. 58]) asserts that n! grows
asymptotically as

√
2πn (n/e)n and in fact, it is easy to prove that

n! >
(n
e

)n
, for all n ≥ 1. (1)

In the past years, several authors have considered Diophantine equations involving factorial
numbers. For instance, Erdös and Selfridge [8] proved that n! is a perfect power, only when
n = 1. However, the most famous among such equations was posed by Brocard [5], in 1876, and
independently by Ramanujan [17], [18, p. 327], in 1913. The Diophantine equation

n! + 1 = m2 (2)

is then known as Brocard-Ramanujan Diophantine equation.
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It is a simple matter to find the three known solutions, namely when n = 4, 5 and 7. Recently,
Berndt and Galway [2] did not find further solutions up to n = 109. The best contribution to
the problem is due to Overholt [16], who showed that the equation (2) has only finitely many
solutions if we assume a weak version of the abc Conjecture1. However, the Brocard-Ramanujan
equation is still an open problem.

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn,
for n ≥ 0. There are several interesting problems related to Fibonacci numbers. For instance,
the problem of finding the perfect powers in the Fibonacci sequence was a classical problem
that attracted much attention during the past 40 years. In 2003, Bugeaud et al [6, Theorem
1] confirmed the expectation: the only perfect powers in that sequence are 0, 1, 8 and 144. A
generalization of this result can be found in [15]. Consult the historical section of [6] and its very
extensive annotated bibliography for additional references and history. We still point out that Sun
[19] has recently conjectured that every integer n > 4 can be written as the sum of an odd prime
and two positive Fibonacci numbers.

A number of mathematicians have been interested in Diophantine equations that involve both
factorial and Fibonacci numbers. For example, in [9] it is shown that if k is fixed, then there are
only finitely many positive integers n such that

Fn = m1! +m2! + · · ·+mk!

holds for some positive integers m1, . . . ,mk and all the solutions for the case k ≤ 2 have been
determined. After, the case k = 3 was also solved, see [4]. In a very recent paper, Luca and
Siksek [11] found all factorials expressible as the sum of at least three Fibonacci numbers.

In 1999, Luca [10], proved that Fn is a product of factorials only when n = 1, 2, 3, 6, 12.
Also, the largest product of distinct Fibonacci numbers which is a product of factorials is

F1F2F3F4F5F6F8F10F12 = 11!,

see [12].
In this note, we find Fibonacci numbers whose difference to a product of factorials is±1. Our

result is the following

Theorem 1. The only solutions of the Diophantine equation

m1! · · ·mk!± 1 = Fm, (3)

where 2 ≤ m1 ≤ · · · ≤ mk and m ≥ 3, are m = 4, 5 and m = 4, 5, 7 in the (-) and (+)
cases, respectively. Explicitly, we have 2! + 1 = (2!)2 − 1 = F4, (2!)

2 + 1 = 3! − 1 = F5 and
2!3! + 1 = F7.

We organize this paper as follows. In Section 2, we will recall some useful properties such as
the Binet’s formulae, bounds on Fibonacci and Lucas numbers and the method of factorization

1This conditional result gained more importance, since very recently, S. Mochizuki wrote a paper with a serious
claim to a proof of the abc Conjecture.
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for Fn ± 1 that we will use to prove Theorem 1. The third section is devoted to the proof of
Theorem 1. In the last section, we shall search for pairs (n,m), where m is a Fibonacci number,
satisfying the Brocard-Ramanujan equation.

2 Auxiliary results

Before proceeding further, some considerations will be needed for the convenience of the reader.
The problem of the existence of infinitely many prime numbers in the Fibonacci sequence

remains open, however several results on the prime factors of a Fibonacci number are known. For
instance, a primitive divisor p of Fn is a prime factor of Fn which does not divide

∏n−1
j=1 Fj . It is

known that a primitive divisor p of Fn exists whenever n ≥ 13 and moreover p ≡ 1 (mod n).
The above statement is usually referred to the Primitive Divisor Theorem (see [3] for the most
general version).

We cannot go very far in the lore of Fibonacci numbers without encountering the sequence of
Lucas numbers (Ln)n≥0 which follows the same recursive pattern as the Fibonacci numbers, but
with initial values L0 = 2 and L1 = 1.

By the Binet’s formulae, we have

Fn =
αn − βn

α− β
and Ln = αn + βn, for all n ≥ 1,

where α = (1 +
√
5)/2 and β = (1−

√
5)/2 = (−α)−1. Therefore, for all n ≥ 1

αn−2 < Fn < αn−1. (4)

Among the several pretty identities involving Fibonacci and Lucas numbers, we cite that
Ln = Fn−1 + Fn+1, for n ≥ 1, which can be easily proved by induction. This formula allows to
deduce the following estimate

Ln = Fn−1 + Fn+1 < αn−2 + αn < 3.7αn−2. (5)

We may note that the Fibonacci and Lucas sequences can be extrapolated backwards using
Fn = Fn+2 − Fn+1 and Ln = Ln+2 − Ln+1. Thus, for example, F−1 = 1, F−2 = −1, and so
on. Since that the Binet’s formulae remain valid for Fibonacci and Lucas numbers with negative
indices, one can deduce the following result (which we shall prove for the sake of completeness)

Lemma 1. For any integers a, b, we have

FaLb = Fa+b + (−1)bFa−b.

Proof. The identity α = (−β)−1 leads to

FaLb =
αa − βa

α− β
(αb + βb) = Fa+b +

αaβb − βaαb

α− β
= Fa+b + (−1)bFa−b.
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Lemma 1 gives immediately the following factorizations for Fn ± 1, depending on the class
of n modulo 4:

F4` + 1 = F2`−1L2`+1 ; F4` − 1 = F2`+1L2`−1 (6)

F4`+1 + 1 = F2`+1L2` ; F4`+1 − 1 = F2`L2`+1

F4`+2 + 1 = F2`+2L2` ; F4`+2 − 1 = F2`L2`+2

F4`+3 + 1 = F2`+1L2`+2 ; F4`+3 − 1 = F2`+2L2`+1

The next lemma plays an important role in the proof of Theorem 1

Lemma 2. We have that (
m− 4

2e

)m−4
2

− 3.7αm−1 > α2m−13,

for all m ≥ 10.

Proof. For m ≥ 10, we have (m− 4)/2e > α4 and αm−7 − αm−12 > 3.7. Then(
m− 4

2e

)m−4
2

− 3.7αm−1 > α2m−8 − 3.7αm−1 = αm−1(αm−7 − 3.7) > α2m−13,

for m ≥ 10, which completes the proof.

Now, we are ready to deal with the proof of theorem.

3 The proof of Theorem

The equation (3) can be rewritten as m1! · · ·mk! = Fm ∓ 1. By the relations in (6), we have that
Fm ∓ 1 = FaLb, where 2a, 2b ∈ {m± 1,m± 2}. Therefore, our equation becomes

m1! · · ·mk! = FaLb (7)

Now, the estimates in (4), (5) and the identity (7) yield

m1! · · ·mk! ≤ 3.7α
m+2

2
−1α

m+2
2

−2 = 3.7αm−1. (8)

On the other hand, if m > 26, then a ≥ (m − 2)/2 > 12 and the Primitive Divisor Theorem
implies in the existence of a primitive divisor p of Fa which in particular satisfied p ≡ 1 (mod a).
Thus mk ≥ p ≥ a − 1 ≥ (m − 4)/2 and the estimate (1) yields mk! ≥ ((m − 4)/2e)(m−4)/2.
Therefore, we use (8) to get

3.7αm−1 ≥ m1! · · ·mk! ≥ mk! ≥ ((m− 4)/2e)(m−4)/2 > 3.7αm−1,
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for m ≥ 10, by Lemma 2, which gives an absurd. Hence 3 ≤ m ≤ 26 and a straight calcu-
lation gives that the only solutions of (3) are those in the statement of the theorem. However,
for convenience of the reader we shall describe in a few words how these calculations can be
performed. First, note that mk! ≤ F26 ∓ 1 ≤ 121394 which implies mk ≤ 8. Now, we need
an upper bound on k. For that, if mj ∈ {2, 3, 5}, for 1 ≤ j ≤ k, in the equation (3), then
Fm ∓ 1 = (2!)a(3!)b(5!)c = 2a+b+3c3b+c5c. Thus, if c > 0, then 40 | Fm ∓ 1 which does not
happen in the obtained range and so c = 0. If b > 0, then (Fm ± 1)/6 ∈ {2s · 3` : s, ` ∈ N}
which implies m = 7, 10 and m = 5, 11 in the (-) and (+) case, respectively. Since a+ b ≥ b, the
only possibilities are m = 7 (F7 = 2!3! + 1) and m = 5 (F5 = 3!− 1). When b = 0, the number
Fm ∓ 1 must be a power of 2 which happens only when m = 4 (F4 = (2!)2 − 1 = 2! + 1) and
m = 5 (F5 = (2!)2 + 1). Thus, the other possibilities happens when mk > 5 and so

5040 · 2k−1 ≤ m1! · · ·mk! ≤ 121394,

which implies k ≤ 5. We now prepare a simple Mathematica routine and one needs a few seconds
to show that the difference

m1!m2!m3!m4!m5!± 1− Fm

is never zero in the range 1 ≤ m1 ≤ m2 ≤ m3 ≤ m4 ≤ 8, 7 ≤ m5 ≤ 8 and 3 ≤ m ≤ 26. This
completes the proof.

4 Fibonacci numbers in the Brocard-Ramanujam equation

We point out that the idea of writing Fn± 1 as a product of a Fibonacci and a Lucas numbers has
been used for attacking some Diophantine equations involving Fibonacci numbers. For instance,
the equation Fn ± 1 = y` with integer y and ` ≥ 2 have been solved in [7]. In a recent paper,
the author [13, Theorem 1.1] proved that F1 · · ·Fn + 1 = F 2

m has no solution in positive integers
m,n and after he proved that the equation F1 · · ·Fn + 1 = F t

m has only finitely many solutions
for each t previously fixed, see [14].

As another application of this method, we shall prove the following result

Theorem 2. If (n,m) is a solution of the Brocard-Ramanujan equation (2), where m is a Fi-
bonacci number, then (n,m) = (4, F5).

Proof. If n! + 1 = m2 and m = Fk, then n! = F 2
k − 1 = (Fk − 1)(Fk + 1) = FaLbFcLb, where

2a, 2b, 2c, 2d ∈ {k ± 1, k ± 2}. By the Berndt and Galway calculations, see [2], we can consider
Fk = m > 109 and so k ≥ 45. Therefore, the remainder of the proof proceeds along the same
lines as the proof of Theorem 1.

We finish by pointing out that the following general statement can be proved similarly to
the proofs of our results: let a be an integer number and let (Cn)n≥1 be a sequence given by
C1 = C2 = 1 and Cn+2 = aCn+1 + Cn. Then, there exists an effectively computable constant K
such that if
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m1! · · ·mk!± 1 = Cm and n! + 1 = C2
` ,

holds for some positive integers n,m1, . . . ,mk, then m, ` ≤ K. The constant K depends only on
the parameters of Cn.
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