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Abstract: Let G be a finite abelian group such that G 6= {0} and a, b ∈ G \ {0}. Let CG(a, b) be
the graph whose vertex set is G and the edge set is given by

E = {{x, x+ a}, {x, x+ b}, {x, x− a}, {x, x− b} : x ∈ G}.

In this work, we use the properties of finite abelian group to derive isomorphism testing on the
graph CG(a, b) defined above. We study classes of isomorphic graphs. This work generalizes
Nicoloso and Pietropaoli’s paper [2].
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1 Introduction

Let G be a finite abelian group such that G 6= {0} and a, b ∈ G r {0} with o(b) ≤ o(a). Let
CG(a, b) be the undirected graph whose vertex set is G and the edge set is given by

E = {{x, x+ a}, {x, x+ b}, {x, x− a}, {x, x− b} : x ∈ G}.

We shall assume that a 6= ±b, otherwise CG(a, b) degenerates into CG(a) = CG(b), where CG(a)

is the graph whose vertex set is G and the edge set is given by E = {{x, x+ a}, {x, x− a} : x ∈
G}. A connected component of the graph CG(a) is called an a-cycle.

A graph is k-regular if all its vertices have the same degree k. Under the above conditions,
we can classify CG(a, b) into three types of regular graph as follows.

Theorem 1.1. Let a, b ∈ Gr {0} with a 6= ±b.

(1) CG(a, b) is 2-regular if and only if a and b are elements of order two.
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(2) CG(a, b) is 3-regular if and only if either a or b (not both) is an element of order two.

(3) CG(a, b) is 4-regular if and only if a and b are not elements of order two.

Remark. WhenG = 〈g〉 is cyclic,G has a unique element of order 2, soCG(a, b) is not 2-regular.
Then it is either 3-regular or 4-regular.

Next, we give a condition for CG(a, b) to be connected.

Theorem 1.2. The graph CG(a, b) is connected if and only if the groupG is generated by a and b.

Proof. Assume that CG(a, b) is connected. Let y ∈ G and y 6= 0. Then there is a path between
vertices 0 and y, so y = ka + lb for some k, l ∈ Z. Thus, y ∈ 〈a, b〉. Hence, G = 〈a, b〉.
Conversely, suppose that G = 〈a, b〉. Let x and y be two distinct vertices in CG(a, b). Then
y − x ∈ G = 〈a, b〉. Thus, y − x = ka + lb for some k, l ∈ Z. This means that there is a path
between x and y. Hence, CG(a, b) is connected.

Corollary 1.3. Let G = 〈g〉 be a cyclic group. The graph CG(a, b) is connected if and only if
g = ka+ lb for some k, l ∈ Z.

Proof. It directly follows from Theorem 1.2 becauseG = 〈g〉 = 〈a, b〉 is equivalent to g = ka+lb

for some k, l ∈ Z.

Two graphs (V,E) and (V ′, E ′) are said to be isomorphic, denoted by (V,E) ' (V,E), if
there exists a bijection f : V → V ′ such that {x, y} ∈ E if and only if {f(x), f(y)} ∈ E ′ for
all x, y ∈ V . Note that CG(a, b) and CG(b, a) are trivially isomorphic. Moreover, since the edge
sets of the graphs CG(a, b), CG(−a, b), CG(a,−b), CG(−a,−b) are the same set, they are also
isomorphic.

We can generalize Theorem 1.2 as follows.

Theorem 1.4. If H = 〈a, b〉, then the graph CG(a, b) has [G : H] = |G|/|H| connected compo-
nents, each of which is isomorphic to CH(a, b).

Proof. Let x ∈ G and let x+CH(a, b) be the translation graph whose vertex set is x+H and edge
set is {{x+h, x+h+a}, {x+h, x+h+b}, {x+h, x+h−a}, {x+h, x+h−b} : h ∈ H}. Clearly,
x+CH(a, b) is isomorphic to CH(a, b). By Theorem 1.2, CH(a, b) is connected, so x+CH(a, b)

is a connected component of CG(a, b) for all x ∈ G. Since
⋃
x∈G

(
x+ CH(a, b)

)
= CG(a, b) and

|{x + CH(a, b) : x ∈ G}| = |{x + H : x ∈ G}| = [G : H] = |G|/|H|, we have CG(a, b) has
|G|/|H| connected components and each component is isomorphic to CH(a, b).

Remark. If G = Zn is a cyclic group of order n ≥ 2, then H = 〈a, b〉 = 〈gcd(a, b)〉, so
|H| = n

gcd(n,gcd(a,b))
= n

gcd(n,a,b)
and CG(a, b) has gcd(n, a, b) connected components.

Furthermore, for a cyclic group G, Nicoloso and Pietropaoli [2] studied the isomorphism
testing problem for connected circulant graphs CG(a, b) and derived a necessary and sufficient
condition to test whether two circulant graphs CG(a, b) and CG(a′, b′) are isomorphic. They
proposed an elementary method to solve isomorphism testing, which is purely combinatorial and
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new for the problem. In addition, properties of the classes of mutually isomorphic graphs were
analyzed.

In this work, we let G be any finite abelian group and use their properties to define the repre-
sentative matrix of CH(a, b) and derive isomorphism testing on the graph CG(a, b) defined above.
We study classes of isomorphic graphs. This generalizes Nicoloso and Pietropaoli’s paper [2].

The paper is organized as follows. In the next section, we represent our graph CG(a, b) as
the matrix M(a, b) and study its properties including a-cycles, b-cycles, column jumps and block
jumps. Isomorphism criteria and examples are given in the final section.

2 Cycles and matrices

In the previous section, we learn that each connected components of CG(a, b) is isomorphic to
CH(a, b) where H = 〈a, b〉. Now we start with the definition of representative matrix of CH(a, b)

denote by M(a, b), which will be used to prove the isomorphism testing as our main theorem in
the next section. The representative matrix M(a, b) for the graph CH(a, b) can be defined as the
following table.

0 a 2a . . . (o(a)− 1)a

b b+ a b+ 2a . . . b+ (o(a)− 1)a

2b 2b+ a 2b+ 2a . . . 2b+ (o(a)− 1)a

...
...

...
. . .

...
(o(b+ 〈a〉)− 1)b (o(b+ 〈a〉)− 1)b+ a (o(b+ 〈a〉)− 1)b+ 2a . . . (o(b+ 〈a〉)− 1)b+ (o(a)− 1)a

Lemma 2.1. Let a, b ∈ Gr {0} with a 6= ±b and H = 〈a, b〉. Then

H/〈a〉 = {〈a〉, b+ 〈a〉, 2b+ 〈a〉, . . . , (o(b+ 〈a〉)− 1)b+ 〈a〉} = 〈b+ 〈a〉〉.

In particular, o(b+ 〈a〉) = |H|
o(a)

.

Proof. Clearly, 〈b + 〈a〉〉 ⊂ H/〈a〉. Let x ∈ H . Then x = ka + lb for some k, l ∈ Z, so
x + 〈a〉 = ka + lb + 〈a〉 = lb + 〈a〉 ∈ 〈b + 〈a〉〉. Hence, H/〈a〉 = 〈b + 〈a〉〉. Moreover,
o(b+ 〈a〉) = |〈b+ 〈a〉〉| = |H/〈a〉| = |H|

o(a)
.

From the above matrix, M(a, b) has r = o(b+ 〈a〉) rows and c = o(a) columns. The number
of entries of M(a, b) is o(b + 〈a〉)o(a) = |H|. Each row corresponds to a coset in the quotient
H/〈a〉 and all entries of M(a, b) are distinct. In other words, vertices of CH(a, b) appear exactly
once.

Two vertices x, y ∈ G are said to be a-adjacent if y − x = ±a and {x, y} is said to be an
a-edge and x, y are in an a-cycle if y − x ∈ 〈a〉. Notice that two consecutive entries of a row
are a-adjacent and the first and the last entries of a same row also are a-adjacent, so that each
row of M(a, b) corresponds to an a-cycle of CH(a, b). Thus, CH(a, b) consists of o(b + 〈a〉)
a-cycles of length o(a). In addition, two consecutive entries of a column are b-adjacent, that is,
their difference is ±b. However, the first and the last entries of a same column are not necessarily
b-adjacent. It depends on the column-jump of M(a, b) denoted by λ(a, b).
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Lemma 2.2. Let a, b ∈ Gr{0}. Then there exists a unique number λ(a, b) ∈ {0, 1, . . . , o(a)−1},
called the column-jump of M(a, b), satisfying

rb = λ(a, b)a. (1)

Proof. Since b+ 〈a〉 ∈ G/〈a〉, we have

rb+ 〈a〉 = o(b+ 〈a〉)b+ 〈a〉 = o(b+ 〈a〉)(b+ 〈a〉) = 〈a〉,

so rb ∈ 〈a〉. Hence, there exists a unique λ(a, b) ∈ {0, 1, . . . , o(a) − 1} such that rb = λ(a, b)a

as desired.

Some remarks on the column-jump of M(a, b) are studied in the next theorem.

Theorem 2.3. Let a, b ∈ Gr {0}.

(1) λ(−a, b) = 0 if and only if λ(a, b) = 0.

(2) λ(−a, b) = o(a)− λ(a, b) if λ(a, b) and λ(−a, b) are nonzero.

(3) λ(a,−b) = 0 if and only if λ(a, b) = 0.

(4) λ(a,−b) = o(a)− λ(a, b) if λ(a, b) and λ(a,−b) are nonzero.

(5) λ(−a,−b) = λ(a, b).

Theorem 2.4. Let a, b ∈ G. Then
c

o(a+ 〈b〉)
=
o(b)

r
.

Proof. If a or b = 0, the conclusion is trivial. Assume that a, b ∈ Gr {0}. From Lemma 2.1, we

have r =
|H|
c

and o(a+〈b〉) =
|H|
o(b)

. Then rc = |H| = o(a+〈b〉)o(b), so
c

o(a+ 〈b〉)
=
o(b)

r
.

Theorem 2.5. Let a, b ∈ Gr {0} and write λ = λ(a, b) 6= 0. Then gcd(λ, o(a)) = o(a+ 〈b〉).

Proof. From Eq. (1) and r = o(b+ 〈a〉) | o(b),

o(b)

r
=

o(b)

gcd(r, o(b))
= o(rb) = o(λa) =

o(a)

gcd(λ, o(a))
.

Thus, we have gcd(λ, o(a)) = o(a) · r
o(b)

= o(a+ 〈b〉) by Theorem 2.4.

From the above theorem, 〈λa〉 = {0, λa, 2λa, . . . ,
( o(a)
o(a+〈b〉) − 1

)
λa}. This implies that a b-

cycle of CH(a, b) consists of h = o(a)
o(a+〈b〉) = c

o(a+〈b〉) columns. As a consequence, M(a, b) can be
partitioned into h equally sized submatrices, the blocks denoted by βl where l ∈ {0, 1, . . . , h −
1}. The block βl is defined on all the r rows and o(a + 〈b〉) consecutive columns from column
lo(a+ 〈b〉) + 1 to (l + 1)o(a+ 〈b〉).

Since o(a+ 〈b〉) | λ(a, b), that is, λ(a, b) is a multiple of o(a+ 〈b〉). From this, we define the
block-jump of M(a, b) to be

Λ(a, b) =
λ(a, b)

o(a+ 〈b〉)
, (2)

where Λ(a, b) ∈ {0, 1, . . . , h− 1}. Moreover, we have:
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Theorem 2.6. Let a, b ∈ Gr {0}.

(1) Λ(−a, b) = h− Λ(a, b).

(2) Λ(a,−b) = h− Λ(a, b).

(3) Λ(−a,−b) = Λ(a, b).

Proof. We use the definition of block-jump and Theorem 2.3 to prove (1)–(3) as follows.

(1) Λ(−a, b) = λ(−a,b)
o(−a+〈b〉) = o(a)−λ(a,b)

o(a+〈b〉) = o(a)
o(a+〈b〉) −

λ(a,b)
o(a+〈b〉) = h− Λ(a, b).

(2) Λ(a,−b) = λ(a,−b)
o(a+〈−b〉) = o(a)−λ(a,b)

o(a+〈b〉) = o(a)
o(a+〈b〉) −

λ(a,b)
o(a+〈b〉) = h− Λ(a, b).

(3) Λ(−a,−b) = λ(−a,−b)
o(−a+〈−b〉) = λ(a,b)

o(a+〈b〉) = Λ(a, b).

This completes the proof.

Example 2.7. Since Z2 × Z6 = 〈(1, 2), (0, 3)〉, the graph CZ2×Z6((1, 2), (0, 3)) is connected. We
have r = o((0, 3) + 〈(1, 2)〉) = 2 and

(0, 0) = 2(0, 3) = r(0, 3) = λ((1, 2), (0, 3))(1, 2),

so λ((1, 2), (0, 3)) = 0, which implies Λ((1, 2), (0, 3)) = λ((1,2),(0,3))
o((1,2)+〈(0,3)〉) = 0

6
= 0. Since

c = o((1, 2)) = 6, M((1, 2), (0, 3)) has r = 2 rows and c = 6 columns. The representative
matrix M((1, 2), (0, 3)) for the graph CZ2×Z6((1, 2), (0, 3)) is the following table (the blocks are
separated by double lines)

(0, 0) (1, 2) (0, 4) (1, 0) (0, 2) (1, 4)

(0, 3) (1, 5) (0, 1) (1, 3) (0, 5) (1, 1)

Example 2.8. Since Z2×Z2×Z3 = 〈(0, 1, 2), (1, 1, 1)〉, the graph CZ2×Z2×Z3((0, 1, 2), (1, 1, 1))

is connected. We have r = o((1, 1, 1) + 〈(0, 1, 2)〉) = 2 and

(0, 0, 2) = 2(1, 1, 1) = r(1, 1, 1) = λ((0, 1, 2), (1, 1, 1))(0, 1, 2),

so λ((0, 1, 2), (1, 1, 1)) = 4, which implies Λ((0, 1, 2), (1, 1, 1)) = λ((0,1,2),(1,1,1))
o((0,1,2)+〈(1,1,1)〉) = 4

2
= 2.

Since c = o((0, 1, 2)) = 6, M((0, 1, 2), (1, 1, 1)) has r = 2 rows and c = 6 columns. The repre-
sentative matrix M((0, 1, 2), (1, 1, 1)) for the graph CZ2×Z2×Z3((0, 1, 2), (1, 1, 1)) is the following
table (the blocks are separated by double lines)

(0, 0, 0) (0, 1, 2) (0, 0, 1) (0, 1, 0) (0, 0, 2) (0, 1, 1)

(1, 1, 1) (1, 0, 0) (1, 1, 2) (1, 0, 1) (1, 1, 0) (1, 0, 2)
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3 Isomorphism Theorem

In the previous section, we define the representative matrixM(a, b) for the graph CH(a, b), which
has r = o(b + 〈a〉) rows and c = o(a) columns. Moreover, we define the block-jump of M(a, b)

denoted by Λ(a, b), which is a constant in {0, . . . , h− 1}, where h = o(a)
o(a+〈b〉) . In this section, we

study the isomorphism testing problem for the graphs CH(a, b) and use the properties of M(a, b)

to derive a necessary and sufficient condition to test whether two graphs CG(a, b) and CG(a′, b′)

are isomorphic. Our main theorem is as follows.

Theorem 3.1. Let a, a′, b, b′ ∈ G r {0}. Then CH(a, b) and CH′(a′, b′) are isomorphic if and
only if either one of the following two conditions holds:

1. r = r′, o(b′) = o(b) < c = c′ and Λ(a, b) = ±Λ(a′, b′);

2. r = r′, o(b′) = o(b) = c = c′ and either Λ(a, b) = ±Λ(a′, b′) or Λ(a, b) = ±Λ(b′, a′),

where H = 〈a, b〉, H ′ = 〈a′, b′〉, r = o(b+ 〈a〉), r′ = o(b′ + 〈a′〉), c = o(a), c′ = o(a′),Λ(a, b) =
λ(a,b)
o(a+〈b〉) and Λ(a′, b′) = λ(a′,b′)

o(a′+〈b′〉) , where λ(a, b) and λ(a′, b′) are the column-jump of M(a, b) and
M(a′, b′) respectively.

Proof.Case 1. r = r′, o(b′) = o(b) < c = c′ and Λ(a, b) = ±Λ(a′, b′). By Theorem 2.4, o(a +

〈b〉) = r
o(b)
· c = r′

o(b′)
· c′ = o(a′ + 〈b′〉) and observe that h = c

o(a+〈b〉) = c′

o(a′+〈b′〉) = h′.
Then M(a, b) and M(a′, b′) have the same number of rows and columns and the same size
of the blocks.

1.1 Λ(a, b) = Λ(a′, b′). From the representative matrices M(a, b) and M(a′, b′), we see
that a-edge {ib + ja, ib + (j + 1)a} is mapped onto the homologous a′-edge {ib′ +
ja′, ib′ + (j + 1)a′} for all i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c − 1}. A b-
edge {ib+ ja, (i+ 1)b+ ja} is mapped onto the homologous b′-edge {ib′ + ja′, (i+

1)b′ + ja′} for all i ∈ {0, 1, . . . , r − 2} and j ∈ {0, 1, . . . , c− 1}. While, the another
b-edge connecting an entry of the last row with an entry of the first row of M(a, b),
namely {(r − 1)b + ja, (j + Λ(a, b)o(a + 〈b〉))a} is mapped onto the homologous
b′-edge {(r − 1)b′ + ja′, (j + Λ(a′, b′)o(a′ + 〈b′〉))a′} for all j ∈ {0, 1, . . . , c − 1}.
For these reasons, there exists a bijection from ib + ja maps onto the homologous
ib′ + ja′ such that the adjacencies are preserved, for all i ∈ {0, 1, . . . , r − 1} and
j ∈ {0, 1, . . . , c− 1}. Hence, CH(a, b) and CH′(a′, b′) are isomorphic.

1.2 Λ(a, b) = −Λ(a′, b′). Consider the graph CH′(−a′, b′), its block-jump is Λ(−a′, b′) =

h − Λ(a′, b′) = Λ(a, b). By applying the previous case, since Λ(−a′, b′) = Λ(a, b),
CH′(−a′, b′) and CH(a, b) are isomorphic. Since CH′(−a′, b′) and CH′(a′, b′) are triv-
ially isomorphic, CH(a, b) and CH′(a′, b′) are isomorphic.

Case 2. r = r′, o(b′) = o(b) = c = c′ and either Λ(a, b) = ±Λ(a′, b′) or Λ(a, b) = ±Λ(b′, a′).
Clearly, if Λ(a, b) = ±Λ(a′, b′), then CH(a, b) and CH′(a′, b′) are isomorphic. Suppose
Λ(a, b) = ±Λ(b′, a′). Then we can apply Case 1 by swapping a′ and b′, so CH(a, b)
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and CH′(b′, a′) are isomorphic. Since CH′(b′, a′) and CH′(a′, b′) are trivially isomorphic,
CH(a, b) and CH′(a′, b′) are isomorphic, as desired.

Conversely, assume that CH(a, b) and CH′(a′, b′) are isomorphic. Then |H| = |H ′| and there
exists a bijection f from H to H ′ as shown in the following tables.

...
...

...
. . . (i− 1)b+ (j − 1)a (i− 1)b+ ja (i− 1)b+ (j + 1)a . . .

. . . ib+ (j − 1)a ib+ ja ib+ (j + 1)a . . .

. . . (i+ 1)b+ (j − 1)a (i+ 1)b+ ja (i+ 1)b+ (j + 1)a . . .
...

...
...

...
...

...
. . . f((i− 1)b+ (j − 1)a) f((i− 1)b+ ja) f((i− 1)b+ (j + 1)a) . . .

. . . f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a) . . .

. . . f((i+ 1)b+ (j − 1)a) f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a) . . .
...

...
...

for all i, j ∈ Z. Let E ′ be the edge set of CH′(a′, b′). We shall consider the entries in the second
table. Assume that f(ib+ ja) = 0 for some i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c− 1}.

f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0

f((i+ 1)b+ ja)

Since {0, a′} ∈ E ′, we may assume that a′ = f(ib+ (j + 1)a).

f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0 = a′

f((i+ 1)b+ ja)

Since {0, b′} ∈ E ′, either b′ = f((i+ 1)b+ ja) or b′ = f((i− 1)b+ ja) or b′ = f(ib+ (j− 1)a).
Suppose b′ = f(ib+ (j − 1)a).

f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= b′ = 0 = a′

f((i+ 1)b+ ja)

Since {b′, b′ + a′}, {a′, b′ + a′} ∈ E ′, b′ + a′ = 0, which contradicts a′ 6= ±b′. Thus, we may
assume that b′ = f((i+ 1)b+ ja). Clearly, b′ + a′ = f((i+ 1)b+ (j + 1)a).
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f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0 = a′

f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a)

= b′ = b′ + a′

Since {a′, 2a′} ∈ E ′, either 2a′ = f(ib + (j + 2)a) or 2a′ = f((i − 1)b + (j + 1)a). Suppose
2a′ = f((i− 1)b+ (j + 1)a).

f((i− 1)b+ ja) f((i− 1)b+ (j + 1)a)

= 2a′

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a) f(ib+ (j + 2)a)

= 0 = a′

f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a)

= b′ = b′ + a′

Since {2a′, b′ + 2a′}, {b′ + a′, b′ + 2a′} ∈ E ′, b′ + 2a′ = a′, which contradicts a′ 6= ±b′. So
2a′ = f(ib+ (j + 2)a). Clearly, b′ + 2a′ = f((i+ 1)b+ (j + 2)a).

f((i− 1)b+ ja) f((i− 1)b+ (j + 1)a)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a) f(ib+ (j + 2)a)

= 0 = a′ = 2a′

f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a) f((i+ 1)b+ (j + 2)a)

= b′ = b′ + a′ = b′ + 2a′

Since {b′, 2b′} ∈ E ′, either 2b′ = f((i + 2)b + ja) or 2b′ = f((i + 1)b + (j − 1)a). Suppose
2b′ = f((i+ 1)b+ (j − 1)a).

f((i− 1)b+ ja) f((i− 1)b+ (j + 1)a)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a) f(ib+ (j + 2)a)

= 0 = a′ = 2a′

f((i+ 1)b+ (j − 1)a) f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a) f((i+ 1)b+ (j + 2)a)

= 2b′ = b′ = b′ + a′ = b′ + 2a′

f((i+ 2)b+ ja)

Since {2b′, 2b′ + a′}, {b′ + a′, 2b′ + a′} ∈ E ′, 2b′ + a′ = b′, which contradicts a′ 6= ±b′. So
2b′ = f((i + 2)b + ja), which implies 2b′ + a′ = f((i + 2)b + (j + 1)a) and 2b′ + 2a′ =

f((i+ 2)b+ (j + 2)a). Hence, we have the following nine entries.

f((i− 1)b+ ja) f((i− 1)b+ (j + 1)a)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a) f(ib+ (j + 2)a)

= 0 = a′ = 2a′

f((i+ 1)b+ (j − 1)a) f((i+ 1)b+ ja) f((i+ 1)b+ (j + 1)a) f((i+ 1)b+ (j + 2)a)

= b′ = b′ + a′ = b′ + 2a′

f((i+ 2)b+ ja) f((i+ 2)b+ (j + 1)a) f((i+ 2)b+ (j + 2)a)

= 2b′ = 2b′ + a′ = 2b′ + 2a′
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We shall show that
f(mb+ na) = (m− i)b′ + (n− j)a′

for allm ∈ {i, i+1, . . . , i+r−1} and n ∈ {j, j+1, . . . , j+c−1} by the mathematical induction.
The basic step of the statement is obtained from above table. Let k ∈ {i, i + 1, . . . , i + r − 2}
and l ∈ {j, j + 1, . . . , j + c − 2}. Assume that f(ub + va) = (u − i)b′ + (v − j)a′ for all
u ∈ {i, i+ 1, . . . , k} and v ∈ {j, j + 1, . . . , l}. The induction hypotheses say that

f(kb+ la) = (k − i)b′ + (l − j)a′

= (k − i− 1)b′ + (l − j)a′ + b′

= f((k − 1)b+ la) + b′,

f((k − 2)b+ la) = (k − i− 2)b′ + (l − j)a′

= (k − i− 1)b′ + (l − j)a′ − b′

= f((k − 1)b+ la)− b′ and

f((k − 1)b+ (l − 1)a) = (k − i− 1)b′ + (l − j − 1)a′

= (k − i− 1)b′ + (l − j)a′ − a′

= f((k − 1)b+ la)− a′.

That is,

f((k − 2)b+ la)

= f((k − 1)b+ la)− b′

f((k − 1)b+ (l − 1)a) f((k − 1)b+ la) f((k − 1)b+ (l + 1)a)

= f((k − 1)b+ la)− a′

f(kb+ la)

= f((k − 1)b+ la) + b′

Then f((k − 1)b+ (l + 1)a) = f((k − 1)b+ la) + a′.

f((k − 2)b+ la)

= f((k − 1)b+ la)− b′

f((k − 1)b+ (l − 1)a) f((k − 1)b+ la) f((k − 1)b+ (l + 1)a)

= f((k − 1)b+ la)− a′ = f((k − 1)b+ la) + a′

f(kb+ la)

= f((k − 1)b+ la) + b′

From

f(kb+ (l − 1)a) = (k − i)b′ + (l − j − 1)a′

= (k − i)b′ + (l − j)a′ − a′

= f(kb+ la)− a′ and

f((k − 1)b+ la) = (k − i− 1)b′ + (l − j)a′

= (k − i)b′ + (l − j)a′ − b′

= f(kb+ la)− b′,

so either f(kb+ (l + 1)a) = f(kb+ la) + a′ or f(kb+ (l + 1)a) = f(kb+ la) + b′, we suppose
that f(kb+ (l + 1)a) = f(kb+ la) + b′.
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f((k − 2)b+ la)

f((k − 1)b+ (l − 1)a) f((k − 1)b+ la) f((k − 1)b+ (l + 1)a)

= f(kb+ la)− b′ = f((k − 1)b+ la) + a′

f(kb+ (l − 1)a) f(kb+ la) f(kb+ (l + 1)a)

= f(kb+ la)− a′ = f(kb+ la) + b′

f((k + 1)b+ la)

Note that

f(kb+ la) + b′ = (k − i+ 1)b′ + (l − j)a′

= (k − i− 1)b′ + (l − j + 1)a′ − a′ + 2b′

= f((k − 1)b+ la) + a′ − a′ + 2b′,

so {f(kb + la) + b′, f((k − 1)b + la) + a′} /∈ E ′, which contradicts the above table. So f(kb +

(l + 1)a) = f(kb+ la) + a′. Thus, f((k + 1)b+ la) = f(kb+ la) + b′.

f((k − 2)b+ la)

f((k − 1)b+ (l − 1)a) f((k − 1)b+ la) f((k − 1)b+ (l + 1)a)

= f(kb+ la)− b′ = f((k − 1)b+ la) + a′

f(kb+ (l − 1)a) f(kb+ la) f(kb+ (l + 1)a)

= f(kb+ la)− a′ = f(kb+ la) + a′

f((k + 1)b+ la) f((k + 1)b+ (l + 1)a)

= f(kb+ la) + b′

Hence f((k+ 1)b+ (l+ 1)a) = f(kb+ la) + a′+ b′ = (k− i+ 1)b′+ (l− j + 1)a′, as claimed.
Next, we prove that c = c′. From

ca′ = f(ib+ (j + c)a) = f(ib+ ja) = 0 = c′a′,

so (c− c′)a′ = 0. Then c′ = o(a′) divides c− c′, so c′ | c. On the other hand, since f is injective
and

f(ib+ ja) = 0 = c′a′ = f(ib+ (j + c′)a),

ib + ja = ib + (j + c′)a. Thus, c′a = 0, which implies c | c′. Hence, we conclude that c = c′.
Since rc = |H| = |H ′| = r′c′, we have r = r′. Note that

λ(a′, b′)a′ = r′b′ = rb′ = f((i+ r)b+ ja)

= f((i+ r)b+ (λ(a, b)− λ(a, b) + j)a)

= f(ib+ (j + λ(a, b))a) = λ(a, b)a′,

where the last line of above follows from Eq. (1), so λ(a, b) = λ(a′, b′). By Theorem 2.5, since
o(a) = c = c′ = o(a′) and λ(a, b) = λ(a′, b′),

o(a+ 〈b〉) = gcd(λ(a, b), o(a)) = gcd(λ(a′, b′), o(a′)) = o(a′ + 〈b′〉),

which implies o(b) = rc
o(a+〈b〉) = r′c′

o(a′+〈b′〉) = o(b′) by Theorem 2.4. Recall that o(b) ≤ o(a) = c,
so we can distinguish the following two cases.
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Case 1. o(b) = c.

1.1 a′ = f(ib+ (j + 1)a) and b′ = f((i+ 1)b+ ja).

f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0 = a′

f((i+ 1)b+ ja)

= b′

From the above proof, we have r = r′ and o(b′) = o(b) = c = c′. Eq. (2) gives

Λ(a, b) =
λ(a, b)

o(a+ 〈b〉)
=

λ(a′, b′)

o(a′ + 〈b′〉)
= Λ(a′, b′).

1.2 a′ = f(ib+ (j + 1)a) and b′ = f((i− 1)b+ ja).

f((i− 1)b+ ja)

= b′

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0 = a′

f((i+ 1)b+ ja)

= −b′

Since CH(a, b) corresponds to CH′(a′, b′) ' CH′(a′,−b′), there exists a bijection
f from H = 〈a, b〉 to H ′ = 〈a′,−b′〉. Thus, we can apply the previous case by
substituting −b′ in b′, we have r = o(b + 〈a〉) = o(−b′ + 〈a′〉) = o(b′ + 〈a′〉) = r′

and o(b′) = o(−b′) = o(b) = c = c′. From Theorem 2.6 (2), Λ(a, b) = Λ(a′,−b′) =

h− Λ(a′, b′) = −Λ(a′, b′).

1.3 a′ = f(ib+ (j − 1)a) and b′ = f((i+ 1)b+ ja).

1.4 a′ = f(ib+ (j − 1)a) and b′ = f((i− 1)b+ ja).

We can prove Cases 1.3 and 1.4 similar to Case 1.2. So r = r′, o(b′) = o(b) = c = c′

and Λ(a, b) = ±Λ(a′, b′).

1.5 a′ = f((i+ 1)b+ ja) and b′ = f(ib+ (j + 1)a).

f((i− 1)b+ ja)

f(ib+ (j − 1)a) f(ib+ ja) f(ib+ (j + 1)a)

= 0 = b′

f((i+ 1)b+ ja)

= a′

Since CH(a, b) corresponds to CH′(a′, b′) ' CH′(b′, a′), there exists a bijection f
from H = 〈a, b〉 to H ′ = 〈b′, a′〉. Thus, we can apply Case 1.1 by swapping a′ and
b′, we have o(b′) = o(b) = c = c′ and Λ(a, b) = Λ(b′, a′). By Theorem 2.4,

r = o(b+ 〈a〉) = o(a′ + 〈b′〉) =
o(a′ + 〈b′〉)

c′
· o(b′) = r′.
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1.6 a′ = f((i− 1)b+ ja) and b′ = f(ib+ (j + 1)a).

1.7 a′ = f((i+ 1)b+ ja) and b′ = f(ib+ (j − 1)a).

1.8 a′ = f((i− 1)b+ ja) and b′ = f(ib+ (j − 1)a).

For Cases 1.6–1.8, we can prove similar to 1.5 by applying Cases 1.2–1.4 respec-
tively. So r = r′, o(b′) = o(b) = c = c′ and Λ(a, b) = ±Λ(b′, a′).

Hence r = r′, o(b′) = o(b) = c = c′ and either Λ(a, b) = ±Λ(a′, b′) or Λ(a, b) =

±Λ(b′, a′), as desired.

Case 2. o(b) < c. Then we have four cases same as 1.1–1.4. So r = r′, o(b′) = o(b) < c = c′

and Λ(a, b) = ±Λ(a′, b′), as desired.

This completes this main theorem.

Lemma 3.2. Let a, a′, b, b′ ∈ Gr {0}.

(1) If r = r′, o(b) = o(b′) and c = c′, then rb′ = ±λ(a, b)a′ if and only if Λ(a, b) = ±Λ(a′, b′).

(2) If r = r′ and o(b′) = o(b) = c = c′, then ra′ = ±λ(a, b)b′ if and only if Λ(a, b) = ±Λ(b′, a′).

Proof. (1) Let r = r′, o(b) = o(b′) and c = c′. By Theorem 2.4, we have o(a+〈b〉) = o(a′+〈b′〉).
Assume that rb′ = ±λ(a, b)a′. Eq. (1) and r = r′ give λ(a, b)a′ = ±λ(a′, b′)a′, which implies
λ(a, b) = ±λ(a′, b′). Then Λ(a, b) = λ(a,b)

o(a+〈b〉) = ± λ(a′,b′)
o(a′+〈b′〉) = ±Λ(a′, b′) by Eq. (2).

Conversely, assume that Λ(a, b) = ±Λ(a′, b′). From Eq. (2), we have λ(a, b) = Λ(a, b)o(a+

〈b〉) = ±Λ(a′, b′)o(a′ + 〈b′〉) = ±λ(a′, b′), so

rb′ = r′b′ = λ(a′, b′)a′ = ±λ(a, b)a′

as desired.

(2) We can apply (1) by swapping a′ and b′.
Hence, we have the lemma.

We may deduce the following corollary from the above lemma.

Corollary 3.3. Let a, a′, b, b′ ∈ Gr{0}. Then CG(a, b) and CG(a′, b′) are isomorphic if and only
if either one of the following two conditions holds:

(1) r = r′, o(b′) = o(b) < c = c′ and rb′ = ±λ(a, b)a′;

(2) r = r′, o(b′) = o(b) = c = c′ and either rb′ = ±λ(a, b)a′ or ra′ = ±λ(a, b)b′.

Proof. Let H = 〈a, b〉 and H ′ = 〈a′, b′〉. From Lemma 2.1, |H| = rc = r′c′ = |H ′|. By Theorem
1.4, we have CG(a, b) and CG(a′, b′) are isomorphic if and only if CH(a, b) and CH′(a′, b′) are
isomorphic. Hence, this corollary follows from Theorem 3.1 and Lemma 3.2.

We give some examples to demonstrate the above corollary.
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Example 3.4. Let a = (1, 0), a′ = (0, 1), b = (0, 2), b′ = (2, 0) be in Z4 × Z4. Then o(b′) =

o((2, 0)) = 2 = o((0, 2)) = o(b) < c = o((1, 0)) = 4 = o((0, 1)) = c′ and r = o((0, 2) +

〈(1, 0)〉) = 2 = o((2, 0) + 〈(0, 1)〉) = r′. From Lemma 2.2, since

(0, 0) = 2(0, 2) = rb = λ(a, b)a = λ(a, b)(1, 0)

for some λ(a, b) ∈ {0, 1, 2, 3 = c− 1}, λ(a, b) = 0. Thus,

rb′ = 2(2, 0) = (0, 0) = 0(0, 1) = λ(a, b)a′.

By Corollary 3.3, CZ4×Z4((1, 0), (0, 2)) is isomorphic to CZ4×Z4((0, 1), (2, 0)).

Example 3.5. Let a = (1, 0), a′ = (1, 1), b = (0, 1), b′ = (2, 0) be in Z4 × Z4. Since o(b′) =

o((2, 0)) = 2 6= 4 = o((0, 1)) = o(b), CZ4×Z4((1, 0), (0, 1)) and CZ4×Z4((1, 1), (2, 0)) are not
isomorphic by Corollary 3.3.

We quote two results on finite abelian groups as follows.

Theorem 3.6. [1] Let G be a finite abelian group. Then there exist integers n1, . . . , nt > 1 such
that n1 | n2, n2 | n3, . . . , nt−1 | nt and

G ∼= Zn1 × Zn2 × · · · × Znt ,

where these integers are uniquely defined by G.

Theorem 3.7. [1] Let G1, G2, . . . , Gt be finite abelian groups and (a1, a2, . . . , at) ∈
∏t

i=1Gi.
Then

o((a1, a2, . . . , at)) = lcm(o(a1), o(a2), . . . , o(at)),

where o(ai) denotes order of ai in Gi for all i ∈ {1, 2, . . . , t}.

The next corollary gives an easier way to compute the order of elements.

Corollary 3.8. Let a = (a1, a2, . . . , at), b = (b1, b2, . . . , bt) ∈ Zn1 × Zn2 × · · · × Znt where
n1, . . . , nt > 1 and n1 | n2, n2 | n3, . . . , nt−1 | nt. Then

(1) o(a) = lcm
(

n1

gcd(n1,a1)
, n2

gcd(n2,a2)
, . . . , nt

gcd(nt,at)

)
.

(2) |H| = o(a)·o(b)
|〈a〉∩〈b〉| .

(3) o(b+ 〈a〉) = |H|
o(a)

.

Example 3.9. Let a = (1, 2), a′ = (0, 1), b = (0, 3), b′ = (1, 0) be in Z2 × Z6. By Example 2.7,
we have r = o((0, 3) + 〈(1, 2)〉) = 2 and λ((1, 2), (0, 3)) = 0, so

rb′ = 2(1, 0) = (0, 0) = 0(0, 1) = λ(a, b)a′.
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From

c = o(a) = o((1, 2)) = lcm
(

2
gcd(2,1)

, 6
gcd(6,2)

)
= lcm(2, 3) = 6,

c′ = o(a′) = o((0, 1)) = lcm
(

2
gcd(2,0)

, 6
gcd(6,1)

)
= lcm(1, 6) = 6,

o(b) = o((0, 3)) = lcm
(

2
gcd(2,0)

, 6
gcd(6,3)

)
= lcm(1, 2) = 2,

o(b′) = o((1, 0)) = lcm
(

2
gcd(2,1)

, 6
gcd(6,0)

)
= lcm(2, 1) = 2

and 〈a′〉 ∩ 〈b′〉 = 〈(0, 1)〉 ∩ 〈(1, 0)〉 = {(0, 0)}, we have o(b′) = o(b) < c = c′ and |H ′| =
o(a′)·o(b′)
|〈a′〉∩〈b′〉| = 6(2)

1
= 12, which imply r′ = o(b′ + 〈a′〉) = |H′|

o(a′)
= 12

6
= 2 = r. By Corollary 3.3,

CZ2×Z6((1, 2), (0, 3)) is isomorphic to CZ2×Z6((0, 1), (1, 0)).

Example 3.10. Let a = (0, 1, 2), a′ = (1, 0, 1), b = (1, 1, 1), b′ = (0, 1, 1) be in Z2 × Z2 × Z3.
From Example 2.8, we have r = o((1, 1, 1) + 〈(0, 1, 2)〉) = 2 and λ((0, 1, 2), (1, 1, 1)) = 4, so

rb′ = 2(0, 1, 1) = (0, 0, 2) = −4(1, 0, 1) = −λ(a, b)a′.

From

c = o(a) = o((0, 1, 2)) = lcm
(

2
gcd(2,0)

, 2
gcd(2,1)

, 3
gcd(3,2)

)
= lcm(1, 2, 3) = 6,

c′ = o(a′) = o((1, 0, 1)) = lcm
(

2
gcd(2,1)

, 2
gcd(2,0)

, 3
gcd(3,1)

)
= lcm(2, 1, 3) = 6,

o(b) = o((1, 1, 1)) = lcm
(

2
gcd(2,1)

, 2
gcd(2,1)

, 3
gcd(3,1)

)
= lcm(2, 2, 3) = 6,

o(b′) = o((0, 1, 1)) = lcm
(

2
gcd(2,0)

, 2
gcd(2,1)

, 3
gcd(3,1)

)
= lcm(1, 2, 3) = 6

and 〈a′〉 ∩ 〈b′〉 = 〈(1, 0, 1)〉 ∩ 〈(0, 1, 1)〉 = {(0, 0, 0), (0, 0, 1), (0, 0, 2)}, we have o(b′) = o(b) =

c = c′ and |H ′| = o(a′)·o(b′)
|〈a′〉∩〈b′〉| = 6(6)

3
= 12, which imply r′ = o(b′ + 〈a′〉) = |H′|

o(a′)
= 12

6
= 2 = r. By

Corollary 3.3, CZ2×Z2×Z3((0, 1, 2), (1, 1, 1)) is isomorphic to CZ2×Z2×Z3((1, 0, 1), (0, 1, 1)).

Example 3.11. Let a = (6, 9), a′ = (6, 15), b = (12, 18), b′ = (12, 6) be in Z36 × Z36. Then

c = o(a) = o((6, 9)) = lcm
(

36
gcd(36,6)

, 36
gcd(36,9)

)
= lcm(6, 4) = 12,

c′ = o(a′) = o((6, 15)) = lcm
(

36
gcd(36,6)

, 36
gcd(36,15)

)
= lcm(6, 12) = 12,

o(b) = o((12, 18)) = lcm
(

36
gcd(36,12)

, 36
gcd(36,18)

)
= lcm(3, 2) = 6,

o(b′) = o((12, 6)) = lcm
(

36
gcd(36,12)

, 36
gcd(36,6)

)
= lcm(3, 6) = 6,

〈a〉 ∩ 〈b〉 = 〈(6, 9)〉 ∩ 〈(12, 18)〉 = {(0, 0), (12, 18), (24, 0), (0, 18), (12, 0), (24, 18)},
〈a′〉 ∩ 〈b′〉 = 〈(6, 15)〉 ∩ 〈(12, 6)〉 = {(0, 0), (0, 18)}.

Since |H| = o(a)·o(b)
|〈a〉∩〈b〉| = 12(6)

6
= 12 and |H ′| = o(a′)·o(b′)

|〈a′〉∩〈b′〉| = 12(6)
2

= 36, r = o(b + 〈a〉) = |H|
o(a)

=
12
12

= 1 6= 3 = 36
12

= |H′|
o(a′)

= o(b′ + 〈a′〉) = r′. By Corollary 3.3, CZ36×Z36((6, 9), (12, 18)) is not
isomorphic to CZ36×Z36((6, 15), (12, 6)).
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Proposition 3.12. Let a, b ∈ G, as a cyclic group of order n. Then

(1) o(a) = n
gcd(n,a)

.

(2) o(b+ 〈a〉) = gcd(n,a)
gcd(n,a,b)

.

(3) h = n gcd(n,a,b)
gcd(n,a) gcd(n,b)

.

Proof. (1) comes from Corollary 3.8 (1). (2) is obtained from Corollary 3.8 (3) and remark after
Theorem 1.4. (3) can be proved by the fact that h = o(a)

o(a+〈b〉) .

Example 3.13. Let a = 3, a′ = 21, b = 5, b′ = 55 be in Z60. Then o(b′) = o(55) = 60
gcd(60,55)

=

12 = 60
gcd(60,5)

= o(5) = o(b) < c = o(3) = 60
gcd(60,3)

= 20 = 60
gcd(60,21)

= o(21) = c′ and

r = o(5 + 〈3〉) = gcd(60,3)
gcd(60,3,5)

= 3 = gcd(60,21)
gcd(60,21,55)

= o(55 + 〈21〉) = r′. From Lemma 2.2, since

15 = 3(5) = rb = λ(a, b)a = λ(a, b)3

for some λ(a, b) ∈ {0, 1, . . . , 19 = c− 1}, λ(a, b) = 5. Thus,

rb′ = 3(55) = 165 = 45 = 105 = 5(21) = λ(a, b)a′.

This shows that CZ60(3, 5) is isomorphic to CZ60(21, 55).

Example 3.14. Let a = a′ = 2, b = 9, b′ = 15 be in Z42. Then o(b′) = o(15) = 42
gcd(42,15)

= 14 =
42

gcd(42,9)
= o(9) = o(b) < c = c′ = o(2) = 42

gcd(42,2)
= 21 and r = o(9 + 〈2〉) = gcd(42,2)

gcd(42,2,9)
= 2 =

gcd(42,2)
gcd(42,2,15)

= o(15 + 〈2〉) = r′. From Lemma 2.2, since

18 = 2(9) = rb = λ(a, b)a = λ(a, b)2

for some λ(a, b) ∈ {0, 1, . . . , 20 = c− 1}, λ(a, b) = 9. Thus,

rb′ = 2(15) = 30 6= ±18 = 9(2) = ±λ(a, b)a′.

This shows that CZ42(2, 15) is not isomorphic to CZ42(2, 9).
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