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Abstract: In this paper we provide a new elementary proof that the inequality ϕ(n) > π(n) holds
for all integers n ≥ 91, an old result of L. Moser. Our proof is based on Bonse’s Inequality. This
makes it somewhat simpler than Moser’s proof, which in turn relies on Bertrand’s Postulate.
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1 Introduction

For any positive integer n, we denote by π(n) the number of (natural) primes not exceeding n
and by ϕ(n) the number of positive integers not greater than n and relatively prime to n. In 1951,
L. Moser [4] obtained the solutions of the equation ϕ(n) = π(n), by proving that ϕ(n) > π(n)

holds for all n ≥ 91. The main tool of Moser’s proof is the following lemma, classically referred
to as Bertrand’s Postulate.

Lemma 1. pk+1 ≤ 2pk for all positive integers k.

Here and later, pk stands for the k-th prime number. Elementary proofs of Lemma 1 were
given by S. Ramanujan, P. Erdős and L. Moser himself [1, 3, 5]. In this paper, we provide
another proof that ϕ(n) > π(n) for all integers n ≥ 91, but in place of Lemma 1 we use Bonse’s
Inequality [2] in the following form:

Lemma 2. pk+1 ≤
√
p1p2 · · · pk for all integers k ≥ 4.

This is motivated by the general desire to find (more) elementary proofs of known results,
according to the usual sense attributed to the word “elementary” in the context of number theory.
In fact, Lemma 2 is notably weaker than Lemma 1 and we dare to say that the proof of the former
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is somewhat easier than any up-to-date proof of the latter. Moreover, many proofs of Lemma 1
involve upper bounds on π(n) which could be used directly to prove, without much effort, that
the inequality ϕ(n) > π(n) is eventually true.

2 The inequality ϕ(n) > π(n)

Let P be the set of all primes. For any n ∈ N+ and x ≥ 0, we denote by ω(n) the number
of distinct prime factors of n and by Tn(x) the set of all positive integers not exceeding x and
relatively prime with n.

Lemma 3. |Tn(x)| ≥
x

ω(n) + 1
− 2ω(n)−1 for any integer n ≥ 2 and real x ≥ 0.

Proof. Let µ(·) be the Möbius function. From the Inclusion-Exclusion Principle it follows that

|Tn(x)| =
∑
d |n

µ(d)
∣∣{k ∈ N+ : k ≤ x, d | k}

∣∣ =∑
d |n

µ(d)
⌊x
d

⌋
≥ x

∑
d |n

µ(d)

d
−

∑
d |n, µ(d)=1

1 = x
ϕ(n)

n
− 2ω(n)−1. (1)

On the other hand, we have

ϕ(n)

n
=
∏

P3 p |n

p− 1

p
≥

ω(n)+1∏
i=2

i− 1

i
=

1

ω(n) + 1
, (2)

since the last product in (2) is telescoping. Combining (1) and (2) gives the claim.

Theorem 1. ϕ(n) > π(n) for any integer n ≥ 91.

Proof. Pick an integer n ≥ 2. We can subdivide Tn(n) into two disjoint sets: the one consisting
of prime numbers less than n and not dividing n; and the one consisting of positive integers less
than n, relatively prime with n, but not in P. It follows that

ϕ(n) = |Tn(n)| = π(n)− ω(n) + |Tn(n) \ P|. (3)

Let p be the least prime number such that p - n. Ifm ∈ Tn(n/p)\{1} thenmp ≤ n, gcd(mp, n) =
1 and mp /∈ P, hence mp ∈ Tn(n) \ P. Therefore, we have

|Tn(n) \ P| ≥ |Tn(n/p)| − 1 ≥ n

p(ω(n) + 1)
− 2ω(n)−1 − 1, (4)

as a consequence of Lemma 3. From (3) and (4) it follows

ϕ(n)− π(n) = |Tn(n) \ P| − ω(n) ≥
n

p(ω(n) + 1)
− 2ω(n)−1 − ω(n)− 1. (5)

Assume at this point that n ≥ 716. Then, it is uniquely determined an integer k ≥ 4 such that
n ∈ [pk#, pk+1#− 1], where pk# := p1p2 · · · pk is the primorial. This implies that ω(n) ≤ k

and p ≤ pk+1. If k ≤ 6, then computation verifies the inequality

n

p
≥ max(716, pk#)

pk+1

> (2k−1 + k + 1)(k + 1). (6)
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Otherwise, Lemma 2 yields pk+1 ≤
√
pk#, whence

n

p
≥ pk#

pk+1

≥
√
pk# ≥

√
p6# · 24(k−6) > 24(k−6)+7 ≥ 9 · 22(k−4)

= (2k−1 + 2k−4) · 2k−4 ≥ (2k−1 + k + 1)(k + 1), (7)

since pi > 24 for any integer i ≥ 7 and k + 1 ≤ 2k−4. In both cases, it is found that

n

p
> (2k−1 + k + 1)(k + 1) ≥ (2ω(n)−1 + ω(n) + 1)(ω(n) + 1), (8)

which ultimately gives, together with (5), that ϕ(n) > π(n). The claim now follows by a direct
inspection of the remaining values of n in beetween 90 and 716. This can be sped up by avoiding
the computation of many values of ϕ(n) and π(n) when (5) already guarantees that ϕ(n) >
π(n).
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