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1 Introduction 

n numerous papers, Carlitz considered generalized versions of differential operators in the form 
of Chak derivatives defined by 
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Carlitz also studied properties associated with the Schur derivative 
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in which{ }ma  is a sequence and p is a prime number [1, 2]. 
In [10], we have also used these operators in association with Lah numbers arising from a 

search for some multisection formulas. The purpose of this paper is to investigate some 
properties of generalized differential operators, particularly in relation to Laguerre polynomials. 

2 Rising and falling factorials 

In a previous paper [11], falling and rising factorials were utilised in the following forms. The 
falling factorial, an r-permutation of n distinct objects, is given by 

 )1)...(1(),( +−−== rnnnrnPnr  (2.1) 
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and is such that 
 ),1,1(),1(),(),( −−=−−=∇ rnrPrnPrnPrnP  (2.2) 

Similarly, we showed for the rising factorial of n  

 )1)...(1( −++= rnnnnr  (2.3) 
that 

 .)1( 1−=−−=∇ rrrr rnnnn  (2.4) 

This is a recurrence relation for ,rn  which is an r permutation of n + r – 1 objects, and 
which is related to the Stirling numbers [9]. Corresponding binomial coefficients were also 
considered, namely, 
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in which rn  is the falling r-factorial of n and 
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in which rn  is the rising r-factorial of n. Thus, 
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which is also suggested by the Gauss-Cayley form of the generalized binomial coefficient [8].  
Here, it is proposed to illustrate and extend Carlitz’ approach to cycles of binomial coefficients 
[4, 5]. 

3 Extended Laguerre polynomials 

The search for a cycle of the type k
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although it did finish up as 
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which is a form of the Laguerre polynomials for which Carlitz [6] has developed some 
generating functions. Carlitz also defined 
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where 
)(xLn ).(! )0( xLn n=  

The ordinary Laguerre polynomials can be expressed as: 
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The equivalence of the two forms depends on the relation 

!n ,!)1()1( aaakn knak −− +++−=  

the proof of which follows.  The right hand side of (2.3) equals 
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as required. Thus, 
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The ordinary Laguerre polynomials are defined for n a positive integer and x a positive 
real number by the equation 
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This suggests a definition of Laguerre polynomials in terms of q-series. Accordingly, we 
define formally 
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where the q-series 

nq)( ),1)...(1)(1( 2 nqqq −−−=  

and we use z to emphasize the connection with the ordinary integers. Then 
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(see Carlitz [7]). 
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if we define .0)(1 =− xL  Now, 
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Equating coefficients of nt we get 
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which is a recurrence relation for these extended Laguerre polynomials. 
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from the symmetry of the binomial coefficients. On equating coefficients of nt we get 
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as a definition of the extended Laguerre polynomials. The analogy is quite complete and can be 
seen more readily in the form 
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when compared to (3.3). 

4 Generalized differential operators 

The analogy between (3.3) and (3.5) and the differential equation for ordinary Laguerre 
polynomials 
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suggests that we define 
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for the extended Laguerre polynomials and that we investigate the properties of the 
operator zxD . It turns out that 
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It is notationally convenient at this stage to use nq , the n-th reduced Fermatian of index q, 

instead of nq)( , which is defined [1, 2] in terms of 
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The relation between the Fermatian numbers and the q-series is actually quite close 

as  expressed in some of the properties. For example, if we consider the equality of their 
appropriate binomial coefficients, then  
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We continue to use z instead of q to emphasize analogies with ordinary integers. Thus, we 
define 
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Furthermore, we let 
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with .0=zDzx  Other properties follow. 
If a is a constant, then 
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and 
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which for z = 1  reduces to 
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as an expression of the ordinary chain rule for differentiation. 

5 Concluding comments 

Other properties can be readily developed, such as 
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and for u = u(x), v = v(x), we have an analogue of Leibnitz’ theorem for the n-th derivative of a 
product of two functions, 
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 The proof follows readily by induction on n. 
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