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1 Introduction

One of the most useful results in elementary number theory is the following result of E. Lucas.

Theorem 1.1 ([1], E. Lucas (1878)). Let p be a prime and m and n be two integers considered in
the following way,
m = akpk + ak_lpk_l + ...+ a1p+ ap,

-1

n="bp" +b_1p"" + ...+ bip+ by,

where all a; and b; are non-negative integers less than p. Then,

max(k,l
(m) _ (akpk + a1 P+ ap+ ao) _ 1—([ : (ai) (mod p)
n blpl + bl_lpl_l 4+ ...+ blp —+ b() o =0 bZ '

Notice that the theorem is true if a; > b; fori =0, 1,2, ... max(k,I)

There has been many different proofs of this result in the years that followed its first publica-
tion. We present here an alternate approach using elementary number theoretic techniques.



2 Proof of Theorem 1.1

First of all, we state and prove a few lemmas

Lemma 2.1. If
CL0+CL1X—|—CZ2X2—|—...—|—CLTLX” = b0+le+bQX2++ann (modp)

then
a; = b; (mod p) Vi € [[0,n]].

Proof. Indeed, if ag+ a1 X +aosX?*+- -4+ a, X" = by + b1 X + 0 X*+ -+ b, X" (mod p), then
there exits a polynomial k(X ) = ko + k1 X + ko X? + -+ - + k, X™ at most of degree n such that
ap+a1 X +as X2+ +a, X" = bo+b1 X +0o X2+ - -+ b, X" +p(ko+ k1 X + ko X2+ -+ k, X ™).
This gives ag + a1 X + as X? + -+ + a, X™ = by + pko + (b1 + pk1) X + (by + pko) X% + -+ +
(bn, + pk,,) X™. Hence we get ag = by + pko, a1 = by + pky, ay = by + pks ..., an, = b, + pky,. Or
equivalently ag = by (mod p), a; = by (mod p), as = by (mod p) ,- - -, a, = b, (mod p).

The reciprocal implication is trivial. [

Lemma 2.2. If the base p expansion of a positive integer n is n = ag + aip + asp® + - - - + a;p’
then we have n! = qag!(a;p)!(azp®)! - - - (a;p")! with q a natural number.

Proof. Since the factorial of a natural number is a natural number, there exists a rational number

g such that
n!
q= .
ao!(aip)!(azp?)!. .. (aip')!

Let S be the set S = {xy, z9,...,x;} . We consider lists of elements of .S where x is repeated
ao times, z1 is repeated a;p times,. . ., x; is repeated a;p' times such that, 0 < a; < p — 1 with
i € [[0,1]]. In such a list, there are [ + 1 unlike groups of identical elements. For instance the
selection

Loy Ly ooy LYy L1y L1yeeeyLLyeennnn P B0 by B
(. ~ . ~~ - N —— e’
ao aip a;pt

is such a list of n elements which contains [ + 1 unlike groups of identical elements.
The number of these lists is given by

n!
ao!(arp)!(asp?)!. .. (ap)!

It proves that the rational number ¢ is a natural number. And, since the factorial of a natural
number is non-zero (even if this number is 0 because 0! = 1), we deduce that ¢ is a non-zero
natural number. ]

Theorem 2.3. Letn = ap +b = ag + a1p + asp® + ... + ap' such that 0 < b < p — 1 and
0<a;<p—1withie€ [[0,l]]. Then ¢ =1 (mod p).

Before we prove Theorem 2.3 we shall state and prove the following non-trivial lemmas.
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Lemma 2.4. The integers q and p are relatively prime.

Proof. If 0 < g < p, since p is prime, g and p are relatively prime.

If ¢ > p, let us assume that p and q are not relatively prime. It would imply that there exist
an integer z > 0 and a non-zero natural number ¢’ such that ¢ = ¢'p® with ged(¢’, p) = 1. Since
n! = qao!(ap)!. .. (a;_1p ) (a;p")! we get n! = ¢'p®ao!(ar1p)!. .. (qp")!. It follows that n!
would contain a factor a;,p"* such that ¢ = a;,.q" with a;,, € [[1,p— 1]]. But, a4 ,p'™* > n.

l+1_1

Indeed we know that 1 +p +... +p' = == Sop™ =1+ (p— 1)1 +p+... +p').
Then p'™ > (p— 1)+ (p—Dp+...+ (p—1)p". Since 0 < a; < p — 1 with i € [[0,]],
we have 0 < a;p° < (p — 1)p* with i € [[0,]]. Therefore, p'*! > ag + a1p + ... + a;p' so
P> n = apLptt > n.

Since n! doesn’t include terms like a;,,p'™ > n with a;,, € [[1,p — 1]], we obtain a contra-
diction. It means that the assumption ¢ = ¢'p” with x € N* and gcd(¢’, p) = 1 is not correct. So,

q is not divisible by a power of p. It results that ¢ and p are relatively prime. O]
We know that n! = (ap + b)! = qag!(aip)!. .. (aqp")! with a = [2].0 < a; < p—1with
1=20,1,2,...,p—1and b = ag. Let g1, with 0 <7 < a; < a be the natural number

(ap+b—ip)!
ao!((a1 — 0)p)(agp?)!. .. (a;ph)!”

Qall;i =

In particular, we have ¢ = gq4,1 0.
Lemma 2.5. Gal1i+1 = qal 1, (mod p)

PAREat]

Proof. We have (0 <1 < ay)

(ap +b— ip) _ Gal ((al - i)p>
p Qa,l,1,i+1 p

Or equivalently
(ap +b— z’p> ((a1 — z)p)
Ga,l,1,i+1 = a1, .
p p
Now . . ;
(ap+ —zp) — <(a—z)p+ ) =a—1i=a; —i(modp),
p p
and ‘
((al B z)p) =a; — i (mod p).
p
Therefore g,1.i+1(@1 — ) = @ay1,i(a1 — ) (mod p). Since a; —i with¢ =0,1,2,...,a; — 1 and
p are relatively prime, SO ¢41,i+1 = a1, (mod p). O
Notice that g,; 1., corresponds to the case where a; = 0, (ap + asp® + ... + alpl)! =

Qa1.a,00! (azp®)!. .. (arph)!.
Lemma 2.6. Forn =ap+0b = a(k)pk + by with 0 < by < p* — 1 and defining (1 < k < l and
0<1i<ay)
(agp® + b — ip")!
aol(arp)! ... ((ag —i)pk)L... (a;ph)!

Qa,l ki =
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with ay > 1, (where it is understood that when a and | appears together as the two first labels of
one q....,, it implies that a is given by a = ag) = (a1ag...a1)p = a1 +asp+ ...+ a;p'') we have

(0<1<a)
(Ct(k)]f)’c + by — ipk) _ alkg ((ak — i)pk)
pk Ga,lki+1 pk

Additionally, qu ki = Gaiki+1 (mod D).
In particular for k£ = 0, we have (0 < i < ag),

qa,l,0i (

ap+b= ap — 1)

da,1,0,i+1
with ao Z 1.
We can prove this lemma by the following a similar reasoning as earlier and hence we omit it
here.
Notice that ¢ = g1,0. And ¢, q, corresponds to the case where a, = 0. Also

Ga—i1k0 = a1 = Ga1,1,i+1 (mod p),

with 0 < i < ay and a; > 1. So, since ¢k = Gak;+1 (Mmod p) with 0 < j < a;, we have
Qa—ilk,j = a—ilk,0 = Ya,l,1,i = qa,l,1,0 (mod p) and Qa—ilk,0 = Qa—i,l1,0 = Ga—illj = Ga—illa =
Qa—ij—1,k,0 (mod p).

SO Ga—iiko0 = Ga—if—140 = = Ga—ilk0 = Ga—i1,1,0 = Ga1,1i = Ga,1,1,0 (mod p). Or
Qa—il,k,0 = a1 = Ga,l,1,0 = Ga,l,k,0 (mod p).

Finally we have ¢ = ¢, k,0 = ¢a,1,1,0 (mod p).

Lemma 2.7. We have also the congruence (a;p')! = a;lp®0+7+-+2""") (mod p).

Proof. We proceed by induction on .

Indeed, we have (a1p)! = 1p-2p--- (a1 — 1)p - a1p (mod p). So (a1p)! = a1!p™ (mod p).

It follows that (asp?)! = ((asp)p)! = (asp)p®?? = aolp®p™P (mod p). So (aswp?)! =
as!p®21*7) (mod p).

Let us assume that (a;p")! = a;lp®(+7+-+42") (mod p).

We have (a;41p")! = ((ai1p")p)! = (aiap?)ph+? = ayqlphir AHPH-42 ) poiar’ (mod p).
Thus (a1t = @y lp@ie 24271409 (mod p).

Hence the result follows. [
We now prove Theorem 2.3.

Proof. If a; = 0 for ¢ € [[1,1]], then n = ay and we have n! = gay! with ¢ = 1. So, if a; = 0 for
i €[[1,1]],¢g =1 (mod p).

Let consider the case where a; = 0 for all ¢ > 1, then n = a¢ + a;p and we have n! =
qao!(aip)!. Then

n! !
qao! = () =(ag+ap)lag+ap—1)...(ap+1) = H (a1p +ag —71).
) r=0



Since 0 < ag — r < qg for r € [[0, ag — 1]], we obtain

ap—1 ag
qag! = H (ap — 1) = Hr = ap! (mod p).
r=0 r=1

Since ap! and p are relatively prime, we have ¢ = 1 (mod p).
Since ¢ = a1 k0 = as1,0 (Mmod p), we conclude that ¢ = 1 (mod p) whatever n is. O

We come back to the proof of Theorem 1.1.
Proof. Let m,n be two positive integers whose base p expansion with p a prime, are
m:a0+a1p+...+akpk,
and
n=by+bip+...+byp,

such that m > n. We assume that a; > b; with i = 0, 1,2, ..., max(k, ). We denote a = L%J
and b = L%j Since a; > b; withi =0, 1,2, ..., max(k,[), we have a > b. We define

) 0 if k<l
Gmax(k) =i k>

and

) b it k<t
max(B) T i k>

In particular if max(k,l) = k, b; = 0 for ¢ > [ and if max(k,l) = [, a; = 0 for ¢ > k. Since
m > n, max(k,l) = k. So, we have amax(k,) = ar and bpax (k) = by With b, = 0 when [ < k.
Using these

m! = k1,000 (a1p)!. .. (akpk)!,

77,' = Qb,l,l,ObO!(blp)! Ce (blpl)!,

and
(m —n)! = qap10(ao —bo)!((ar — b1)p)!. .. ((a, — by)p")!.
We have
my a,k,1,0 ap\ (a1p A (e 1y PR
(n) Qb 1,09a—bk,1,0 <bo) (blp> (bmax(k,l)pmw(k,l))‘
Rearranging

m\ ap {a1p (1) P
4v,1,1,09a—b,k,1,0 n = Ga,k,1,0 bo ) \bip) " \ by pm0) )



Since qa k1,0 = @b1,1,0 = Ga-bk,1,0 = 1 (mod p), we get

max(k,l)
m\ _ [ag aip Amax(k,l)P
= . mod p).
() = () (on) - i) o
Notice that if for some i, a; = 0, then b; = 0 since we assume that a¢; > b; and b; > 0. In such a

case (Zﬂfl) = (ZZ) =1.
We assume that a; > 1. For k € [[1, a;p’ —1]] and for i € [[0, max(k, )] with 1 < a; < p'—1,
(af) = 0 (mod p).

Therefore for a; = 1 we have

1

p

(1+z)" = (i)xk =1+ 2" (mod p),
k=0

and for any a; € [[1,p" — 1]], (1 4+ 2)%?" = ((1 + z)?" )% = (1 + z*")% (mod p).
Now comparing

i

a;p

(L) =" (alf )xk

k=0

and

Finally we have

P
s 3
~
Il
A/~
S
(=N}

ai Amax(k,l)
. mod p).
) (bl) (bmax(k,l)) (mod p)
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