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Abstract: Elements of the Pell sequence satisfy a class of second order linear recurrence 
relations which interrelate a number of integer properties, such as elements of the rows of 
even and odd squares in the modular ring Z4. Integer Structure Analysis of this yields 
multiple-square equations exemplified by primitive Pythagorean triples, the Hoppenot 
equation and the equation for a sphere centred at the origin. The structure breaks down for 
higher powered triples so that solutions are blocked. However, Euler’s extension of Fermat’s 
Last Theorem does not work as the structure does permit multiple power equations such as 
a5 + b5 + c5 + d5 = e5. 
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1 Introduction 

It is well-known that any three consecutive odd integers, N, satisfy the ‘Pellian-type’ 
homogenous second order linear recurrence relation 

 ,2 11 −+ −= iii NNN  (1.1) 

as do any three consecutive even integers.   
We have previously shown that the elements of the rows of the tabulated representation Z4 

(Table 1) satisfy Pellian-type sequences [4] as do the geometric numbers [5]. Terr [8] has also 
considered Pellian-type sequences as part of “Pythagorean triple families”. 

The Pellian-type structure of rows of odd and even squares permits primitive Pythagorean 
triples to form, whereas higher powers lack such structure, so that triples of Nm, m > 2, cannot 
form. Obviously, Pellian-type sequences are useful structural features that can be used to 
analyse integer equations.   
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Here we consider the equation 

 2222 crba −=+  (1.2) 

which applies to a sphere of radius r whose centre is at the origin [1]. 
 

f(r) 04r  14 1 +r 24 2 +r 34 3 +r  
Row 

Class 40  41  42  43  
0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30  31 

Table 1. Rows of modular ring Z4 

2 Equation of a sphere at the origin 

In the primitive form of Equation (1.2), a, b, c and r cannot all have the same parity.  Since the 
odd squares must belong to the class 41 and the even squares fall in 40 , a and b must have 
opposite parity, with r odd and c even.  The elements of the rows of odd squares { }1R and even 
squares { }0R satisfy an inhomogeneous form of (1.1), namely 

 .22 11 +−= −+ iii NNN  (2.1) 
Thus, in Equation (1.2) 
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If we take the rows as the (i+1)th, then Equation (2.2) has the form 
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which shows the compatibility of the left and right hand sides of Equation (1.2). The values of 
a, b, r and c will be restricted so that the right end digits (REDs) are compatible. This yields 
seven possible combinations (Table 2). 

If we take the second example for Set 4 in Table 2, then we get the following values: 
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and so the two sides of Equation (2.3) equal 497. 
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Examples for 
No. (a2)* (b2)* (r2)* (c2)* 

a b r c 

1 1 0 1 0 1 50 51 10 

2 1 0 5 4 11 10 15 2 

3 5 0 1 6 5 20 21 4 

23 10 27 10 
4 9 0 9 0 

33 30 83 70 

5 9 0 5 6 33 10 35 6 

6 1 6 1 4 21 6 31 22 

7 9 4 9 6 3 2 13 4 

Table 2. Possible combinations for Equation (1.2) 

3 Multiple-squares equations 

Suppose that we want to check the equation 

 .22222 edcba =+++  (3.1) 

Parity considerations show that three of the squares on the left hand side will be even and 
fourth will be odd, so that e2 is odd.  The row equation analogous to (2.3) is then 
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The left hand side of (3.2) is compatible with the right hand side so solutions should 
occur. For example, the solution set  

{a,b,c,d,e} = {6,16,10,7,21} 

yields the rows 
Ri: 4,49,16,6,90;  Ri-1: 1,36,9,2,72, 

so that the left and right hand sides of Equation (3.2) each equal 110. 
 The main compatibility factor is obviously the fact that the rows of both odd and even 
squares are elements of the same Pellian sequence (Equation (2.1)). Higher powers do not 
have this compatibility so that triples cannot form with these powers [4]. Sums of squares 
may be reduced to a square if they meet the pPt criteria [2, 6]. Thus, Equation (3.1) may be 
reduced to a pPt. 
 The Hoppenot equation [6] is another example of multiple-square relationships.  These 
sums are a function of the triangular and pyramidal numbers, which, in turn, are elements of 
Pellian sequences [5]. 
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4 Final comments 

In Z4, all even powers ∈ { 44 1,0 } and odd powers ∈ { 444 3,1,0 }. Thus, for a system such as 

 ,55555 edcba =+++  (4.1) 

the left hand side may have even numbers of T4 or 43  (that is, 2, 4, etc.) or a mixed { 44 3,1 } 
structure [3]. This yields an increase in degrees of freedom so that solutions may occur, such as 

 .1441331108427 55555 =+++  (4.2) 

For the triple, only one odd class occurs on the left hand side so that compensation for the 
row structure cannot occur.  On the other hand, the limited distribution of even powers in only 
two classes restricts solutions for 

 ,4444 deba =++  (4.3) 

so that solutions are rare and the components large; for instance [3]: 

 .42248141456021751995800 4444 =++  (4.3) 

 An analysis of Euler’s extension of Fermat’s Last Theorem has been published previously 
[3]. In general, integer structure does not permit power triples. However, for squares the rows 
of even and odd squares follow the same Pellian structure and this allows triples to form. 
Further research relevant to this would be to extend Melham’s work with Fibonacci and Lucas 
numbers [7] to numbers which satisfy Pellian-type recurrence relations. 
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