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1 Introduction

First, let us give some background concerning quantum integers and the functional equations
arising from multiplication of these integers.

Definition 1.1. A quantum integer is a polynomial in q of the form

[n]q := qn−1 + . . .+ q + 1 =
qn − 1

q − 1
(1.1)

where n is any natural number.

From [3], quantum multiplication, a multiplication operation for quantum integers, is defined
by the following rule:

[m]q ? [n]q := [mn]q = [m]q · [n]qm = [n]q · [m]qn (1.2)
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where ? denotes quantum multiplication and · denotes the usual multiplication of polynomials.
Equation (1.2) is just the q-series expansion of the sumset

{0, 1, . . . ,mn− 1} = {0, 1, . . . ,m− 1}+ {0,m, . . . , (n− 1)m}
= {0, 1, . . . , n− 1}+ {0,m, . . . , (m− 1)n}.

Equation (1.2) provides the motivation for studying sequences of rational functions Γ =

{fn(q)|n = 1, . . . ,∞} with coefficients contained in some field of characteristic zero, satisfy-
ing the following functional equations:

fm(q)fn(qm)
(1)
= fn(q)fm(qn)

(2)
= fmn(q) (1.3)

for all m,n ∈ N. We refer to the first equality in the above functional equation as Functional
Equation (1) and the second equality as Functional Equation (2). A sequence of polynomials
which satisfies Functional Equation (2) automatically satisfies Functional Equation (1) but not
vice versa (see [5] for more details).

Definition 1.2. Let Γ = {fn(q)|n ∈ N} be a sequence of rational functions satisfying Functional
Equation (2). Then Γ is said to be generated by quantum integers if there exist ordered pairs of
integers {ui, ti}i with i = 1, . . . , s such that tΓ =

∑
i=1,...,s uiti and

fn(q) =
s∏
i=1

([n]qui )
ti

for all n in N.

Let Γ = {fn(q)} be a sequence of rational functions satisfying Functional Equation (2). The
set of integers n in N where fn(q) 6= 0 is called the support of Γ and is denoted by supp{Γ}.
Let AP be the set consisting of 1 and all natural numbers whose prime factors come from a set of
primes P , thenAP is a multiplicative semigroup which is called a prime multiplicative semigroup
associated to P . From [1] and [2], the support of Γ is a multiplicative prime sub-semigroup of N.

Theorem 1.3. ([1]) Let Γ = {fn(q)} be a sequence of rational functions satisfying Functional
Equation (2). Then supp{Γ} is of the form AP for some set of primes P , and Γ is completely
determined by the collection of rational functions:

{fp(q)|p ∈ P}.

Definition 1.4. Let P be the collection of primes associated to the support AP , in the sense of
Theorem 1.2, of a sequence of rational functions Γ satisfying Functional Equation (2). Then P is
called the support base of Γ.

In the reverse direction, if P is a set of primes in N, then there is at least one sequence Γ

satisfying Functional Equation (2) with support base P . One such sequence can be defined as the
set of polynomials:

fn(q) =

{
[n]q if n ∈ AP ;
0 otherwise.
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We say that a sequence Γ is nonzero if supp{Γ} 6= ∅. If Γ satisfies Functional Equation (2),
then Γ is nonzero if and only if f1(q) = 1 (see [3]). We say that Γ is nontrivial if Γ is nonzero
and fn(q) 6= 1 for at least one n in the support of Γ.

From [1] and [3], there exists a rational number tΓ such that:

deg(fn(q)) = tΓ(n− 1)

for all n in supp{Γ}, where deg(fn(q)) denotes the degree of fn(q). Consequently, Γ is nontrivial
if Γ is nonzero and P 6= ∅. The rational number tΓ is not necessarily an integer (see [3] and [5] for
an example of such a sequence). In fact, we show in [4] and [5] that tΓ can only be non integral
when the set of primes P associated to the support of Γ has the form P = {p} for some prime p.

Definition 1.5. Let Γ := {fn(q)|n ∈ N} be a sequence of polynomials satisfying Functional
Equation (2) and let P 6= ∅ be its support base. Then Γ is called a maximal solution of Functional
Equation (2) if there is no sequence Γ′ := {f ′n(q)|n ∈ N} of polynomials satisfying Functional
Equation (2) whose support base P ′ strictly contains P and

fp(q) = f ′p(q)

for all p ∈ P . In other words, Γ is a maximal solution if it does not arise from another solution
by restriction.

The following result makes it possible to work exclusively with Functional Equation (1) in
constructing solutions of Functional Equation (2):

Theorem 1.6. ([3]) Let P be a set of primes. Let Γ′ = {f ′p(q)|p ∈ P} be a collection of rational
functions such that:

f ′p1
(q) · f ′p2

(qp1) = f ′p2
(q) · f ′p1

(qp2)

for all pi ∈ P (i.e, satisfying Functional Equation (1)). Then there exists a unique sequence
Γ = {fn(q)|n ∈ N} of polynomials satisfying Functional Equation (2) such that fp(q) = f ′p(q)

for all primes p ∈ P .

For a sequence Γ of polynomials satisfying Functional Equation (2), the smallest field K

which contains all the coefficients of all the polynomials in Γ is called The Field of Coefficients
of Γ. In this paper, we are only concerned with sequences of polynomials, each of whose field of
coefficients K is Q, unless otherwise stated.

Let Γ := {fn(q)|n ∈ N} be a sequence of rational functions satisfying Functional Equation
(2). Suppose that Γ is generated by quantum integers, i.e., there exists a collection of order pairs
of integers {(ui, ti)i} such that

fn(q) =
∏
i

([n]qui )
ti

for all n in the support of Γ. Let us write fn(q) as

fn(q) =

∏
i,ti>0([n]qui )

ti∏
i,ti<0([n]qui )ti

.
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In [1], Borisov, Nathanson and Wang ask if there are simple criteria for determining when
such a sequence of rational functions consists only of polynomials. As they noted, it is sufficient
that ∏

i,ti<0

([n]qui )
ti = 1.

However, it is not necessarily so (see [1] for an example).
It is immediate that the field of coefficients of a sequence of rational functions Γ which is

generated by quantum integers is necessarily equal to Q. In the reverse direction, if P contains at
least two primes, then the following result is known:

Theorem 1.7. ([1]) Let Γ = {fn(q)|n ∈ N} be a sequence of rational functions with coefficients
in Q that satisfies Functional Equation (2). If the support of Γ is AP for some collections of
primes P containing at least two primes, then there are

(i) a completely multiplicative arithmetic function λ(n) with support AP ,
(ii) a rational number t0 such that t0(n− 1) is an integer for all n in AP ,
(iii) a finite set R of positive integers and a set {tr}r∈R of integers such that

fn(q) = λ(n)qt0(n−1)
∏
r∈R

([n]qr)
tr

for all n in the support of Γ.

Similarly, if Γ only contains polynomials, we have the following reduction result:

Proposition 1.8. ([5]) Let Γ = {fn(q)|n ∈ N} be a nonzero sequence of polynomials satisfying
Functional Equation (2) with support AP for some set of primes P . Then there exists a unique
completely multiplicative arithmetic function ψ(n), a rational number t, and a unique sequence
Σ = {gn(q)} satisfying (2) with the same support AP such that

fn(q) = ψ(n)qt(n−1)gn(q)

where gn(q) is a monic polynomial with gn(0) 6= 0 for all n ∈ AP .

We call the sequence of polynomials Σ in Theorem 1.8 the normalized version of the sequence
of polynomials Γ.

The following results provide a link among a general solution of Functional Equation (2),
its support base and quantum integers. It also allows us to classify the solutions with field of
coefficients of characteristic zero ([4]).

Theorem 1.9. ([5]) Let Γ = {fn(q)|n ∈ N} be a sequence of polynomials satisfying Functional
Equation (2) and whose field of coefficients is of characteristic zero. Suppose fn(q) is a monic
polynomial such that fn(0) 6= 0 for each n in N.

(1) Field of coefficients is Q: Suppose that deg(fp(q)) = tΓ(p−1) with tΓ ≥ 1 for at least two
distinct primes p and r, which means that the set P associated to the support AP of Γ contains
p and r and the elements fp(q) and fr(q) of Γ are nonconstant polynomials. Then there exist
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ordered pairs of integers {ui, ti}i with i = 1, . . . , s such that tΓ =
∑

i=1,...,s uiti and

fn(q) =
s∏
i=1

([n]qui )
ti (1.4)

for all n in N.
(2) Field of coefficients strictly contains Q: There is no sequence of polynomials Γ, with

field of coefficients strictly containing Q, satisfying Functional Equation (2) and the condition
deg(fp(q)) = tΓ(p− 1), meaning the set P associated to the support AP of Γ contains all prime
numbers and the correspondent elements fp(q) of Γ are nonconstant polynomials, with integral
tΓ ≥ 1 for all primes p. However, if the condition deg(fp(q)) = tΓ(p − 1) with integral tΓ ≥ 1

for all primes p is not imposed on Γ, then there exist sequences Γ’s of polynomials with fields of
coefficients strictly greater than Q satisfying Functional Equation (2).

The decomposition of fn(q) into a product of quantum integers as above is unique in the sense
that if {aj, bj} is another set of integers such that tΓ =

∑
j=1,...,h ajbj and

fn(q) =
h∏
j=1

([n]qaj )
bj

for all n ∈ supp{Γ}, then for each ui there exists at least one aj such that ui = aj . Moreover, if
I ⊆ {1, . . . , s} and J ⊆ {1, . . . , h} are two collections of indexes such that ui = aj exactly for
all i in I and j in J and nowhere else, then∑

i∈I

ti =
∑
j∈J

bj,

and the above relation between any such set of integers {aj, bj}j and the set {ui, ti}i is an equiv-
alence relation.

Theorem 1.10. ([4]) Let Γ = {fn(q)|n ∈ N} be a sequence of polynomials with field of co-
efficients of characteristic zero and satisfying Functional Equation (2). Suppose that the set of
primes P associated to the support of Γ contains at least two distinct primes. Then there exists
a sequence Γ′ = {f ′n(q)|n ∈ N} of polynomials satisfying Functional Equation (2) with field of
coefficients equal to Q and supp{Γ} = supp{Γ′} such that:

• fn(q) divides f ′n(q) in C[q] for all n in supp{Γ}.

• tΓ′ − tΓ ∈ N ∪ {0}.

Even though Theorem 1.9 shows that a solution Γ of Functional Equation (2) with field of
coefficient of characteristic zero and support base P containing all primes must be generated by
quantum integers, the condition P containing all primes is too rigid to be of used. On the other
hand, if the condition P containing all primes is replaced by the condition |P | = ∞, then it is
not sufficient for such conclusion (see [6]), the next result provides exactly what we need for
subsequently parts of this paper.
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Theorem 1.11. ([6]) Let P be the support base of a sequence Γ of polynomials satisfying Func-
tional Equation (2) with field of coefficients of characteristic zero. If P contains all but finitely
many primes, then Γ is generated by quantum integers.

2 Main results

Let Γ = {fn(q)|n ∈ N} be a sequence of rational functions with coefficients in Q that satisfies
Functional Equation (2) and let P be its support base. Then by Theorem 1.7,

fn(q) = λ(n)qt0(n−1)
∏
r∈R

([n]qr)
tr

for some completely multiplicative arithmetic function λ(n) with support AP , a rational number
t0 such that t0(n − 1) is an integer for all n in AP , a finite set R of positive integers and a set
{tr}r∈R of integers. By replacing fn(q) in Γ by the rational function

f ′n(q) =
fn(q)

λ(n)qt0(n−1)

for each n ∈ AP , then it can be verified that the sequence Γ′ = {f ′n(q)|n ∈ AP} satisfies
Functional Equation (2). As a result, we may assume, from now on, without loss of generality
that whenever Γ = {fn(q)|n ∈ N} is a sequence of rational functions with coefficients in Q that
satisfies Functional Equation (2), then there exists a collection of positive integers RΓ and some
collection of integers {tr}r∈RΓ

such that

fn(q) =
∏
r∈RΓ

([n]qr)
tr =

∏
r∈R+,Γ

([n]qr)
tr
∏

r∈R−,Γ

([n]qr)
tr

where R+,Γ and R−,Γ are subsets of RΓ such that tr > 0 and tr < 0 when r ∈ R+,Γ and r ∈ R−,Γ
respectively and R+,Γ ∪ R−,Γ = RΓ , i.e., Γ is generated by quantum integers. If Γ is generated
by quantum integers, then we say that Γ is written in reduced form if

R+,Γ ∩R−,Γ = ∅.

By cancelling factors of the form [n]qr , where r ∈ R+,Γ ∩R−,Γ if R+,Γ ∩R−,Γ 6= ∅, from the
numerator and the denominator of fn(q) for each fn(q) in Γ, we may assume henceforth that Γ is
already in reduced form whenever Γ is generated by quantum integers.

For the question of Borisov, Nathanson and Wang stated before, the answer is trivial if Γ is
a zero or a trivial sequence or if R−,Γ = ∅. Otherwise, the answer is contained in the following
result:

Theorem 2.1. Let Γ = {fn(q)|n ∈ N} be a nonzero sequence of rational functions with coeffi-
cients in Q that satisfies Functional Equation (2) and let P 6= ∅ be its support base.

(I) If P = {p} for some prime p, then

Γ = {fpn(q)|f1(q) = 1, n ∈ N ∪ {0}}
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with fpn(q) = fp(q)fpn−1(qp) for all n ≥ 1 where fp(q) is a rational function, and Γ contains
only polynomials if and only if fp(q) is a polynomial.

(II) If |P | ≥ 2, then Γ contains only polynomials if and only if the following conditions are
satisfied:

(1) (a) Let RΓ be the collection of positive integers and {tr|r ∈ RΓ} be the collection of
integers such that

fn(q) =
∏
r∈RΓ

([n]qr)
tr .

Let R+,Γ and R−,Γ be defined as above. If∏
r∈R+,Γ

rtr∏
r∈R−,Γ r

tr

is not a (positive) integer, then Γ contains at least one non-polynomial element. The converse
does not necessarily hold.

(1) (b) If there exists a positive integer r ∈ R−,Γ satisfying any of the following conditions:

• r is greater than every element of R+,Γ;

• r is divisible by a prime s which does not divide any element of R+,Γ, i.e.,

(
∏

t∈R+,Γ
t)m

r

is not an integer for any natural number m,

then Γ does not contain only polynomials. The converse may not necessarily hold.

(2) Let p be a prime in P . For each r ∈ RΓ, let sp,r be the highest power of p dividing r.
Define

|R+,Γ|p := {psp,rγ | r ∈ R+,Γ; γ| r
psp,r
}

and
|R−,Γ|p := {psp,rγ | r ∈ R−,Γ; γ| r

psp,r
}

where multiplicity is allowed according to the following rules: For each r in RΓ, ptp,rγ appears
|tr| times in |R+,Γ|p (resp. in |R−,Γ|p)) if tr > 0 (resp. if tr < 0) for each r (from this point on, we
always write |tr| as tr, in the context of multiplicity, with the absolute value implicitly understood
to avoid the cumbersome of notation and to avoid the confusion with the similar notation in
|R−,Γ|p and |R+,Γ|p).

If R−,Γ 6= ∅, then Γ contains only polynomials if and only if

|R−,Γ|p ⊆ |R+,Γ|p (2.1)

for all p in P . Furthermore, the followings also hold:
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• If (1)(b) holds, then Γ contains only polynomials if and only if (2.1) holds for all p in P
which divide some r in R+,Γ.

• If every prime p in P does not divide r for any r in RΓ, i.e., if

(
∏
p∈P

p,
∏
r∈RΓ

r) = 1,

then Γ contains only polynomials if and only if (2.1) is satisfied for any p in P .

Our next result concerns maximal solutions of Functional Equation (2). In [2], Nathanson
poses, as Problem 6, the following problem:

Problem: Describe the maximal solutions of Functional Equation (2). For what sets of primes
P does there exist a maximal solution with support base P ?

Our result concerning this problem can be summarized as follows:

Theorem 2.2. (i) If P = {p} for some prime p, then there always exists infinitely many maximal
solutions Γ of Functional Equation (2) with support base P . If Γ0 is a sequence of polynomials,
satisfying Functional Equation (2) with field of coefficients of characteristic zero and support
base P , whose normalized version is sequence of the form

Γ = {fpn(q)|f1(q) = 1, n ∈ N}

with fpn(q) = fp(q)fpn−1(qp) for all n ≥ 1 where fp(q) is a monic polynomial with nonzero
constant term satisfying either of the following conditions:

1. fp(q) possesses at least one root which is not a root of unity.

2. If all roots of fp(q) are roots of unity, then fp(q) possesses at least one roots of unity whose
order is not divisible by p.

Then Γ and thus Γ0 must be a maximal solution. If Γ is a normalized version of a maximal
solution of Functional Equation (2) with support base P = {p} for some prime p and with field
of coefficients Q, then Γ must also be of the form above.

(ii) Suppose |P | ≥ 2, where |·| denotes the cardinality of the set P . If P has finite complement,
i.e., there are at most finitely many primes which are not in P , then there exists at least one
maximal solution with support base P . If Γ is a maximal solution of Functional Equation (2)

with support base P and if the field of coefficients of Γ is Q, then P has finite complement. If P
is a set of primes with nonempty finite complement, then a maximal solution has the form

Γ = {fn(q) =
∏
r∈R

([n]qr)
tr =

∏
r∈R−,Γ

([n]qr)
tr
∏

r∈R+,Γ

([n]qr)
tr |n ∈ AP}

where:
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• R−,Γ 6= ∅.

• For each prime p in the complement of P , |R−,Γ|p is not a subset of |R+,Γ|p.

Furthermore, if there exists one maximal solution with support base P containing at least two
primes and with field of coefficients Q, then there are infinitely many such maximal solutions with
support base P .

Remark 2.3. The conditions (1) (a) and (b) of (II) of Theorem 2.1 are weaker than condition (2) of
Theorem 2.1 since they are necessary but not sufficient for an affirmative conclusion. However,
it is simple and effective to check for negative conclusion. In (2) of (II) of Theorem 2.1, for each
r in RΓ, psp,rγ occurs tr times in |R+,Γ|p (resp. |R−,Γ|p) if tr > 0 (resp. if tr < 0) does not mean
that the value m = psp,rγ occurs exactly tr times in |R+,Γ|p (resp. |R−,Γ|p). This is because if
sp,r1 = sp,r2 for some r1 and r2 in RΓ such that both are in R+,Γ (or R−,Γ), then psp,r1 occurs tr1
times and psp,r2 occurs tr2 times, and thus v = psp,r1 = psp,r2 (γ = 1) occurs at least tr1 + tr2 times
in |R+,Γ|p (or in |R−,Γ|p). In (i) of (II) of Theorem 2.2, Γ is normalized so that fp(q) does not
possess any root equal to zero, i.e., all roots of fp(q) are nonzero. Hence condition (1) of (i) says
that fp(q) contains at least one non-zero root which is not a root of unity. In a future paper, we
will address the lifting of the condition, which we impose on some parts of (i) and (ii) of Theorem
2.2 concerning the fields of coefficients of a maximum solution Γ being Q, in the case where the
field of coefficients is of characteristic zero.

We conclude this section with the following:

Problems:
(1) Suppose Γ is a maximal solution of Functional Equation (2) with support base P = {p}

for some prime p and with field of coefficients different from Q. Must Γ have the form described
in (i) of Theorem 2.2?

(2) Suppose Γ is a maximal solution of Functional Equation (2) with support base P contain-
ing at least two primes. Suppose that the field of coefficients of Γ is not Q. Must P have finite
complement?

(3) If P contains at least two primes and if there exists one maximal solution to Functional
Equation (2) with support base P and field of coefficients strictly contains Q, then does that
implies there are infinitely many such solutions?

3 Proof of results

Proof. (Proof of Theorem 2.1)
Let Γ = {fn(q)|n ∈ N} be a nontrivial sequence of rational functions, with field of coeffi-

cients Q, which satisfies Functional Equation (2) and let P 6= ∅ be its support base.
(I) Suppose P = {p} for some prime p. Then Γ is nontrivial. The support of Γ, AP , must

have the form {pn|n ∈ N ∪ {0}} for the prime p in P . Since Γ satisfies Functional Equation (2),

fpn(q) = fp(q)fpn−1(qp) (3.1)

19



where fp(q) is the rational function in Γ indexed by p. As a result, each rational function fpn(q)

is determined by fp(q) by induction. Therefore,

Γ = {fpn(q)|f0(q) = 1, n ∈ N ∪ {0}}

with fpn(q) = fp(q)fpn−1(qp) for all n ∈ AP , and Γ contains only polynomials if and only if
fp(q) is a polynomial. Therefore, (I) follows if we prove that (3.1) gives in fact a well-defined
formula for fpn(q) for each n ∈ N. This follows from the lemma below:

Lemma 3.1. Let n be any natural number. Let u and v be nonnegative integers such that u+ v =

n. Then
fpn(q) = fpu(q)fpv(q

pu) = fpv(q)fpu(qp
v

). (3.2)

Proof. Without loss of generality, we may assume that u ≥ 1 and v ≥ 1 because if either of them
is equal to 0, then (3.4) becomes fpn(q) = fpn(q). We prove this lemma by induction on n:

(1) For n = 2, (3.2) becomes

fp2(q) = fp(q)fp(q
p) = fp(q)fp(q

p)

which holds because of (3.1).
(2) It can be verified from (3.1) and the induction hypothesis that

fpn(q) = fp(q)fpn−1(qp) = fp(q)fpu−1(qp)fpv((q
p)p

u−1

) = fpu(q)fpv(q
pu).

Similarly,

fpn(q) = fp(q)fpn−1(qp) = fp(q)fpv−1(qp)fpu((qp)p
v−1

) = fpv(q)fpu(qp
v

).

Therefore,
fpn(q) = fpu(q)fpv(q

pu) = fpv(q)fpu(qp
v

)

for all nonnegative integers u and v. In particular, the sequence of rational functions

Γ := {fpn(q)|n ∈ N ∪ {0}}

satisfies Functional Equation (2).

(II) Suppose |P | ≥ 2. First we prove (2). Then we show that (2) implies (1).
By the normalization discussed earlier, there exists a collection of positive integers R =

R+,Γ ∪R−,Γ and a collection of positive integers {tr|r ∈ R} such that

fn(q) =
∏

r∈R+,Γ

([n]qr)
tr
∏

r∈R−,Γ

([n]qr)
tr

for all n in the support AP of Γ. If R−,Γ = ∅, then it follows immediately that fn(q) ∈ Q[q] for
all n in the support AP and there is nothing to prove. Hence we may assume that R−,Γ 6= ∅. Let
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us consider the collection of rational functions

ΓP = {fp(q) =
∏

r∈R+,Γ

([p]qr)
tr
∏

r∈R−,Γ

([p]qr)
tr | p ∈ P}.

It can be verified from Functional Equation (2) that part (2) of Theorem 2.1 will follow if we can
show that fp(q) is a polynomial for each p ∈ P if and only if it satisfies the condition described
in (2) of (II) of Theorem 2.1.

First let us prove a weaker statement: Γ contains only polynomials if and only if (2.1) holds
for all p in P .

(⇒) Suppose that
|R−,Γ|p ⊆ |R+,Γ|p

for all p in P .

Lemma 3.2. Let p be any prime and let r be a positive integers.
(1) If p does not divide r, then

[p]qr =
∏
γ∈Σr

Ppγ(q)

where Σr is the collection of all distinct divisors of r, and Ppγ(q) is the irreducible monic cyclo-
tomic polynomial of order pγ with coefficients in Q.

(2) If p divides r, then
[p]qr =

∏
γ∈Σr

Ppz+1γ(q)

where Σr is the collection of all distinct divisors of r
pz

, pz is the highest power of p dividing r and
Ppz+1γ(q) is the irreducible monic cyclotomic polynomial of order pz+1γ with coefficients in Q.

Proof. (1) Suppose p does not divide r. Let u be a positive integer and let Pu(q) be the cyclotomic
polynomial in Q[q] of order u, i.e., Pu(q) is the irreducible (in Q[q]) monic polynomial in Q[q]

whose roots are all distinct primitive u-roots of unity. Let Σr be the collection of all distinct
divisors of r . Since

[p]qr =
qpr − 1

qr − 1
,

the roots of [p]qr , viewed as a polynomial in q, are all distinct pr-roots of unity which are not
r-roots of unity. Since p does not divide r, the collection of all roots of [p]qr must consist of all
the roots of unity of order pγ where γ divides r. As a result,

[p]qr =
∏
γ∈Σr

Ppγ(q).

(2) Suppose p divides r. Let z be the highest power of p dividing r and let Πr denote the
collection of all distinct divisors of r

pz
. Since p divides r, it can be verified using the same

argument as in (1) that the collection of all roots of [p]qr must consist of all the roots of unity of
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order pz+1γ where γ divides r
pz

. Then

[p]qr =
∏
γ∈Πr

Ppz+1γ(q).

Let p be any prime in P . It can be verified from (1) and (2) of Lemma 3.2 and the definition
of |R+,Γ|p that ∏

r∈R+,Γ

([p]qr)
tr =

∏
r∈R+,Γ

∏
γ∈Πr

(Ppz+1γ(q))
tr =

∏
ω∈|R+,Γ|p

Pω(q)

where Πr is the collection of all distinct divisors of r
pz

. Similarly, it can also be verified that∏
r∈R−,Γ

([p]qr)
tr =

∏
r∈R−,Γ

∏
γ∈Πr

(Ppz+1γ(q))
tr =

∏
ω∈|R−,Γ|p

Pω(q).

As a result,

fp(q) =
∏
r∈RΓ

([p]qr)
tr

=
∏

r∈R+,Γ

([p]qr)
tr
∏

r∈R−,Γ

([p]qr)
tr

=

∏
ω∈|R+,Γ|p Pω(q)∏
ω∈|R−,Γ|p Pω(q)

.

Hence, fp(q) is a polynomial since

|R−,Γ|p ⊆ |R+,Γ|p

for each p in P . Therefore, Γ contains only polynomials.

(⇐) Suppose Γ contains only polynomials and R−,Γ 6= ∅. Then fp(q) is a polynomial for all
primes p in P . As above, we have

fp(q) =

∏
ω∈|R+,Γ|p Pω(q)∏
ω∈|R−,Γ|p Pω(q)

for all p in P . Since Pω(q) is irreducible,

|R−,Γ|p ⊆ |R+,Γ|p

for each p in P .
Now to see that condition (2) implies (1)(a) and (1)(b), it suffices if we show that the weaker

statement above implies (1)(a) and (1)(b).
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To prove (1)(b), suppose that there exists an element r inR−,Γ such that r is greater than every
element of R+,Γ. Then it can be verified from the definitions of |R−,Γ|t and |R+,Γ|t that r is in
|R−,Γ|t but r is not in |R+,Γ|t for every t in P . Similarly, if there exists an element r in R−,Γ such
that r is divisible by a prime p which does not divide any element of R+,Γ, then it can be verified
that tst,rp, where st,r is the highest power of t dividing r, is in |R−,Γ|t but not in |R+,Γ|t for every
t in P . Therefore, if either of the conditions in (1)(b) occurs, then it can be verified that |R−,Γ|t
is not a subset of |R+,Γ|t. This contradicts our assumption that condition (2) holds and thus the
result follows.

To show that (1)(a) also follows from condition (2), suppose that (2.1) holds for all primes p
in P and ∏

r∈R+,Γ
rtr∏

r∈R−,Γ r
tr

is not an integer. Then there exists a prime swith s dividing some element r inR−,Γ and a positive
integer n such that sn divides

∏
r∈R−,Γ r

tr but does not divide
∏

r∈R+,Γ
rtr . Let

ΦR−,Γ := {ri ∈ R−,Γ | s|ri}.

For each ri in Φ, let ei be the highest power of s dividing ri. Then∏
ri∈ΦR−,Γ

seitri = sn.

Note that s must also divide some element r′ in R+,Γ since (1)(b) holds (see above). Choose a
prime p in P such that p 6= s (this can be done since P contains at least two primes by hypothesis).
Let

ΦR+,Γ
:= {rj ∈ R+,Γ | s|rj}.

For each rj in ΦR+,Γ
, let gi be the highest power of s dividing rj . Then∏

rj∈ΦR+,Γ

sgjtrj = sm

for some integer m < n. Let ri be any element of ΦR−,Γ . Let l|R−,Γ|p and l|R−,Γ|p be the multiplic-
ities of psp,risei in |R−,Γ|p and |R+,Γ|p respectively where sp,ri is the highest power of p dividing
ri. From the hypothesis |R−,Γ|p ⊆ |R+,Γ|p, we have:

l|R−,Γ|p ≤ l|R+,Γ|p .

It can be verified that this implies m ≥ n (the details are left to the reader), which contradicts our
assumption. Thus the result follows. This shows that if Γ contains only polynomials, then it is
necessary that conditions (1)(a) and (1)(b) are satisfied.

Lemma 3.3. (1) If each prime t in P does not divide r for any r in RΓ, then Γ contains only
polynomials if and only if (2.1) is satisfied for any t in P .

(2) If (1)(b) is satisfied and (2.1) holds for at least one prime p in P which divides r for some
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r ∈ R+,Γ, then (2.1) holds for all primes t which do not divide any r in R+,Γ, and thus (2.1) holds
for all t in P which do not divide r for any r in RΓ.

Proof. (1) If each prime p in P does not divide r for any r in RΓ and if Γ contains only poly-
nomials, then (2.1) holds for all primes p in P by the proof above. To prove the other direction,
suppose that every prime t in P does not divide r for any r in RΓ and suppose that (2.1) holds for
one prime p in P . To show that Γ contains only polynomials, it is sufficient for us to show that if
(2.1) holds for p, then (2.1) holds for all primes t in P in this case. For this, it suffices for us to
prove the following statements:

|R+,Γ|pi = |R+,Γ|pj

and
|R−,Γ|pi = |R−,Γ|pj

for any primes pi and pj in P . By assumption, st,r = 0 for all t in P and all r in RΓ. In particular,
sp,r = 0 for all r in RΓ by above. It follows from the definitions of |R+,Γ|p and |R−,Γ|p that

|R+,Γ|p = {γ | γ|r, r ∈ R+,Γ} (3.3)

and
|R−,Γ|p = {γ | γ|r, r ∈ R−,Γ} (3.4)

with γ appearing tr times in |R+,Γ|p (resp. in |R−,Γ|p) for each r in R+,Γ (resp. R−,Γ) divisible
by γ. Since the right hand sides of (3.3) and (3.4) are independent of p, (1) follows.

(2) Suppose (1)(b) holds. Then it follows immediately that if s is prime in P dividing r for
some r in R−,Γ, then s divides r for some prime r in R+,Γ. Suppose that there exists one prime t
in P such that t divides r for some r in R+,Γ and

|R−,Γ|t ⊆ |R+,Γ|t

holds. Let p be any prime such that p does not divide any element r in RΓ (or equivalently, in
R+,Γ since (1)(b) holds). Then we need to show:

|R−,Γ|p ⊆ |R+,Γ|p.

Write

|R+,Γ|t := {tst,rγ | r ∈ R+,Γ; γ| r
tst,r
} = {tst,rγ | r ∈ R(1)

+,Γ; γ| r
tst,r
} ∪ {γ | r ∈ R(2)

+,Γ; γ|r}

and

|R−,Γ|t := {tst,rγ | r ∈ R−,Γ; γ| r
tst,r
} = {tst,rγ | r ∈ R(1)

−,Γ; γ| r
tst,r
} ∪ {γ | r ∈ R(2)

−,Γ; γ|r}

where:

• tst,rγ appears tr times in |R+,Γ|t (resp. in |R−,Γ|t) if tr > 0 (resp. if tr < 0).
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• R(1)
+,Γ (resp. R(1)

−,Γ) consists of all r in R+,Γ (resp. in R−,Γ) which are divisible by t.

• R(2)
+,Γ (resp. R(2)

−,Γ) consists of all r in R+,Γ (resp. in R−,Γ) which are not divisible by t.

Since the above unions are disjoint as well as

{tst,rγ | r ∈ R(1)
+,Γ; γ| r

tst,r
} ∩ {γ | r ∈ R(2)

−,Γ; γ|r} = ∅,

{tst,rγ | r ∈ R(1)
−,Γ; γ| r

tst,r
} ∩ {γ | r ∈ R(2)

+,Γ; γ|r}

and
{tst,rγ | r ∈ R(1)

−,Γ; γ| r
tst,r
} ∩ {γ | r ∈ R(2)

−,Γ; γ|r} = ∅,

it follows that
{γ | r ∈ R(2)

+,Γ; γ|r} ⊇ {γ | r ∈ R(2)
−,Γ; γ|r}

and
{tst,rγ | r ∈ R(1)

+,Γ; γ| r
tst,r
} ⊇ {tst,rγ | r ∈ R(1)

−,Γ; γ| r
tst,r
}.

We can also write

|R+,Γ|p := {γ | r ∈ R+,Γ; γ|r} = {γ | r ∈ R(1)
+,Γ; γ|r} ∪ {γ | r ∈ R(2)

+,Γ; γ|r}

and
|R−,Γ|p := {γ | r ∈ R−,Γ; γ|r} = {γ | r ∈ R(1)

−,Γ; γ|r} ∪ {γ | r ∈ R(2)
−,Γ; γ|r}

since sp,r = 0 for all r in RΓ by assumption. Note that these unions are not necessarily disjoint.
It can be verified from above that it suffices for us to prove:

U = {γ | r ∈ R(1)
+,Γ; γ|r} ∪ {γ | r ∈ R(2)

+,Γ; γ|r} − {γ | r ∈ R(2)
−,Γ; γ|r}

⊇ {γ | r ∈ R(1)
−,Γ; γ|r} = V .

Let us suppose the contrary. Then there exists an element γ0 in V such that γ0 appears with
greater multiplicity in V than it does in U . It can be verified that γ0 is of the form twγ′ where
w ∈ {0, . . . , st,r} and γ′ divides r

tst,r
for some r in R(1)

−,Γ such that w ≤ st,r. LetWV (resp. WU )
denote the collection of all r in R(1)

−,Γ (resp. in R(1)
+,Γ) such that γ0 divides r, or equivalently, such

that st,r ≥ w and γ′ divides r
tst,r

.
There are two cases:
(i) w ∈ {1, . . . , st,r}: It can be verified that the following statements hold:

• γ0 must occur in {γ | r ∈ R(1)
+,Γ; γ|r} if γ0 occurs in U .

• The multiplicity of γ0 in V is equal to the its multiplicity in |R−,Γ|p.

• The multiplicity of γ0 in U is equal to the its multiplicity in |R+,Γ|p.
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Let m− denote the multiplicity of twγ′ in |R−,Γ|p and m+ denote its multiplicity in |R+,Γ|p.
Then m− > m+ by assumption. It can be verified that

m− =
∑

{r∈R−,Γ|st,r≥w;γ′| r

t
st,r }

tr =
∑

{r∈R−,Γ|r∈WV}

tr

and
m+ =

∑
{r∈R+,Γ|st,r≥w;γ′| r

t
st,r }

tr =
∑

{r∈R+,Γ|r∈WU}

tr.

Write
WV =

⋃
i

W(i)
V

as a disjoint union whereW(i)
V := {r ∈ WV | st,r = vi} for some positive integer vi, and

WU =
⋃
i

W(i)
U

as a disjoint union where W(i)
U := {r ∈ WU | st,r = ui} for some positive integer ui. Since

|R−,Γ|t ⊆ |R+,Γ|t, it can be verified that:

{vi | st,r = vi; r ∈ W(i)
V } ⊆ {ui | st,r = ui; r ∈ W(i)

U },

and ∑
r∈W(i)

V

tr ≤
∑
r∈W(i)

U

tr

if vi = ui. Therefore,
m− =

∑
i

∑
r∈W(i)

V

tr ≤
∑
i

∑
r∈W(i)

U

tr = m+

which contradicts our assumption.
(ii) w = 0: Let us show that the multiplicity of γ0 in V is at most its multiplicity in the subset

{γ | r ∈ R(1)
+,Γ; γ|r} of U . Let m− denote the multiplicity of γ0 in V , m+ denote its multiplicity

in {γ | r ∈ R(1)
+,Γ; γ|r} and m represent its multiplicity in U . Hence m+ ≤ m. Also, m− > m

by the assumption about γ0. Let GV (resp. GU ) denote the collection of r in R(1)
−,Γ (resp. in R(1)

+,Γ)
such that γ0 divides r, or equivalently, such that st,r ≥ w and γ′ divides r

tst,r
. It can be verified

that
m− =

∑
{r∈R(1)

−,Γ|st,r≥w;γ′| r

t
st,r }

tr =
∑

{r∈R(1)
−,Γ|γ′|

r

t
st,r }

tr =
∑

{r∈R−,Γ|r∈GV}

tr

and
m+ =

∑
{r∈R(1)

+,Γ|st,r≥w;γ′| r

t
st,r }

tr =
∑

{r∈R(1)
+,Γ|γ′|

r

t
st,r }

tr =
∑

{r∈R+,Γ|r∈GU}

tr.
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Similarly as in case (i), write
GV =

⋃
i

G(i)
V

as a disjoint union where
G(i)
V := {r ∈ GV | st,r = vi}

for some positive integer vi, and
GU =

⋃
i

G(i)
U

as a disjoint union where
G(i)
U := {r ∈ GU | st,r = ui}

for some positive integer ui. It can be verified from the relation stated earlier, namely

{tst,rγ | r ∈ R(1)
−,Γ; γ| r

tst,r
} ⊆ {tst,rγ | r ∈ R(1)

+,Γ; γ| r
tst,r
},

that
{vi | st,r = vi; r ∈ G(i)

V } ⊆ {ui | st,r = ui; r ∈ G(i)
U },

and ∑
r∈G(i)

V

tr ≤
∑
r∈G(i)

U

tr

if vi = ui. Therefore,

m− =
∑
i

∑
r∈G(i)

V

tr ≤
∑
i

∑
r∈G(i)

U

tr = m+ ≤ m

which also contradicts our assumption.
As a result,

|R−,Γ|p ⊆ |R+,Γ|p

and the proof of Lemma 3.3 is complete.

Therefore, if (1)(b) is satisfied and (2.1) holds for all primes t in P which divide some r in
R+,Γ, then (2.1) also holds for all primes t which do not divide any r in R+,Γ. Therefore, (2.1)
holds for all primes p in P , and thus Γ contains only polynomials.

To complete the proof of Theorem 2.1, we need to show that the converses of (1)(a) and
(1)(b) do not necessarily hold. That is to show that there exist sequences Γ of rational functions
satisfying the hypothesis of Theorem 2.1 such that Γ satisfies either condition (1)(a) or condition
(1)(b) of Theorem 2.1 but they contain rational functions which are not polynomials. For this, see
examples (1) and (2) below.

Some application examples: The following examples illustrate various situations concerning
Theorem 2.1.
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(1) Γ := {fn(q) =
[n]q2 ([n]q5 )3

[n]q3
| n ∈ AP} where P = {2, 3, 5}.

Since ∏
r∈R+,Γ

rtr∏
r∈R−,Γ r

tr
=

2.53

3

is not a positive integer, Γ does not contain only polynomials by condition (1) (a) of Theorem 2.1,
a fact which can be verified by direct computation or by noticing that the polynomial which is the
numerator of

f3(q) =
[3]q2([3]q5)3

[3]q3

does not possess any primitive 9-root of unity while the polynomial which is the denominator of
f3(q) does.

(2) Γ := {fn(q) =
[n]q2 ([n]q3 )3

[n]q6
| n ∈ AP} where P = {2, 3, 5}. Then

∏
r∈R+,Γ

rtr∏
r∈R−,Γ r

tr
=

2.33

6

is a positive integer. However, since 6 > 2, 3, Γ does not contain only polynomials by condition
1 (b) of Theorem 2.1. This conclusion can easily be seen to be correct since the polynomial

[5]q6 =
q30 − 1

q6 − 1

possesses at least one primitive 30-roots of unity while the polynomial

[5]q2([5]q3)3 =
q10 − 1

q2 − 1

(
q15 − 1

q3 − 1

)3

does not.

(3) Γ := {fn(q) =
[n]q6 [n]q9

[n]q2 ([n]q3 )3 | n ∈ AP} where P = {2, 3, 5}. Then

∏
r∈R+,Γ

rtr∏
r∈R−,Γ r

tr
=

6.9

2.33
= 1

is a positive integer. Moreover, no element in R−,Γ is greater than every element of R+,Γ. To
check condition (2), we have

• R+,Γ = {6, 9} with t6 = 1 and t9 = 1.

• R−,Γ = {2, 3} with t2 = 1 and t3 = 3.

However,
|R−,Γ|3 = {1, 2, 3.1, 3.1, 3.1}

which is not a subset of
|R+,Γ|3 = {3.1, 3.2, 32.1}.

28



Hence Γ does not contain all polynomials. This can also be seen directly by noting that the
numerator of

f3(q) =
[3]q6 [3]q9

[3]q2([3]q3)3

does not posses any primitive 6-root of unity while the denominator, [3]q2([3]q3)3, does. This
example shows that conditions (1)(a) and (1)(b) are not sufficient for giving an affirmative con-
clusion to the question whether or not Γ contains only polynomials.

(4) Γ := {fn(q) =
([n]q6 )2[n]q15 [n]q21

[n]q2 ([n]q3 )3 | n ∈ AP} for some collection of primes P . Then
conditions (1)(a) and (1)(b) are satisfied since∏

r∈R+,Γ
rtr∏

r∈R−,Γ r
tr

=
62.15.21

2.33
= 210

is a positive integer and there is no element in R−,Γ which is greater than every element of R+,Γ.
Also, there is no element inR−,Γ which is divisible by a prime which does not divide any element
of R+,Γ.

(a) Suppose P = {2, 3, 5}. Then

|R+,Γ|2 = {2.1, 2.3, 2.1, 2.3, 1, 3, 5, 15, 1, 3, 7, 21}

does not contain
{2.1, 1, 3, 1, 3, 1, 3} = |R−,Γ|2

as a subset. Therefore, Γ does not contain only polynomials by condition (2) of Theorem 2.1.
(b) Suppose P = {7, 11, 13}. Then

|R+,Γ|7 = {1, 2, 3, 6, 1, 2, 3, 6, 1, 3, 5, 15, 1, 3, 7, 21} ⊇ {1, 2, 1, 3, 1, 3, 1, 3} = |R−,Γ|7.
|R+,Γ|11 = {1, 2, 3, 6, 1, 2, 3, 6, 1, 3, 5, 15, 1, 3, 7, 21} ⊇ {1, 2, 1, 3, 1, 3, 1, 3} = |R−,Γ|11.

|R+,Γ|13 = {1, 2, 3, 6, 1, 2, 3, 6, 1, 3, 5, 15, 1, 3, 7, 21} ⊇ {1, 2, 1, 3, 1, 3, 1, 3} = |R−,Γ|13.

Hence, Γ contains only polynomials by condition (2) of Theorem 2.1. This example demonstrates
that the answer to the question whether or not Γ contains only polynomials also depends on its
support base P and that |R+,Γ|p and |R−,Γ|p stay the same for every p in P if p does not divide r
for any r in RΓ.

Proof. (Proof of Theorem 2.2)
(i) Suppose that P = {p} for some prime p. Let f(q) be a nonzero polynomial with coef-

ficients contained in a field of characteristic zero. It can be verified from the proof of Theorem
2.1 (also see [4] for more details) that there exists a unique sequence of polynomials, satisfying
Functional Equation (2), of the form

Γ = {fpn(q)|f1(q) = 1, n ∈ N, f(q) = fp(q)}

with fpn(q) = fp(q)fpn−1(qp) for all n ≥ 1. Hence the support base of Γ is P . By normalizing this
sequence of polynomials using Theorem 1.8, we may assume that fp(q) is a monic polynomial
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with nonzero constant term (0 is thus not a root of fp(q)).

Lemma 3.4. Suppose fp(q) satisfies either of the following conditions of Theorem 2.2:

1. fp(q) possesses at least one root which is not a root of unity.

2. If all roots of fp(q) are roots of unity, then there is at least one root whose order is not
divisible by p.

Then Γ is a maximal solution of Functional Equation (2).

Proof. Suppose that Γ is not a maximal solution. Then there exists a sequence of polynomials

Γ′ := {f ∗n(q)|n ∈ N}

satisfying Functional Equation (2) such that its support base P ∗ strictly contains P and f ∗p (q) =

fp(q). Hence, P ∗ contains at least two primes. If the field of coefficients of Γ∗ is Q, then there
exits a collection of positive integers RΓ∗ and a collection of integers {tr | r ∈ RΓ∗} such that

f ∗n =
∏
r∈RΓ∗

([n]qr)
tr

for all n ∈ AP ∗ by Theorem 1.9. In particular,

f ∗p =
∏
r∈RΓ∗

([p]qr)
tr .

Consequently, it can be verified that every root of f ∗p (q) = fp(q) is a root of unity of order
divisible by p. Therefore, this contradicts the hypothesis of Lemma 3.4. Hence Γ must be a
maximal solution.

If the field of coefficients of Γ∗ strictly contains Q, then there exists a sequence of polynomials
Γ′, with Q as its field of coefficients and support AP ∗ , satisfying Functional Equation (2) such
that f ∗n(q) divides f ′n(q) for all n in AP ∗ , by Theorem 1.10. Then again by Theorem 1.9,

f ′n =
∏
r∈RΓ′

([n]qr)
tr

for all n ∈ AP ′ for some collection of positive integers RΓ′ and some collection of integers
{tr | r ∈ RΓ′} since the field of coefficients of Γ′ is Q. Since fp(q) divides f ∗p (q) which in turn
divides f ′p(q) in C[q], it can be deduced that every root of fp(q) must also be a root of unity of
order divisible by p, which contradicts the hypothesis. Therefore, Γ must be a maximal solution.

Next let us suppose that Γ is a maximal solution of Functional Equation (2) with support base
P = {p} for some prime p and with field of coefficients Q. Hence fp(q), the polynomial in Γ

indexed by p, must be nonzero. We need to show that Γ has the form and satisfies the properties
prescribed in Theorem 2.2. As above, it can be verified that Γ must have the form

Γ = {fpn(q)|f1(q) = 1, n ∈ N}
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with fpn(q) = fp(q)fpn−1(qp) for all n ≥ 1. By Theorem 1.8,

fp(q) = ψ(p)qtΓ(p−1)gp(q)

where:

• gp(q) is a monic polynomial with nonzero constant term and the sequence of polynomials
{gn(q) | n ∈ AP} satisfies Functional Equation (2).

• ψ is a completely multiplicative arithmetic function with support AP .

Lemma 3.5. gp(q) must be a nonconstant polynomial.

Proof. Suppose gp(q) is a constant polynomial, i.e. gp(q) = 1 since it is monic. Let r be any
prime distinct from p. Define:

fr(q) = ψ(r)qtΓ(r−1)gr(q)

where:

• gr(q) = 1.

• ψ(r) = 1, ψ(rm) := (ψ(r))m and ψ(pnrm) := ψ(pn)ψ(rm) for any nonnegative integers
m and n.

Then ψ is a completely multiplicative arithmetic function on the domain of the form AP ′ :=

{pnrm | n,m ∈ N ∪ {0}} which is a prime semigroup generated by P ′ = {p, r}. It can be
verified that the sequences of polynomials

{gn(q) | n ∈ AP ′}

and
Γ′ := {fn(q) | n ∈ AP ′}

satisfy Functional Equation (2) such that Γ is the restriction of Γ′ to the domain AP . Hence, Γ is
not a maximal solution to Functional Equation (2), which contradicts our assumption. Therefore,
gp(q) must be a nonconstant polynomial.

By Theorem 1.8, we may assume that Γ is its own normalized version, i.e., each polynomial
fn(q) is a monic polynomial with nonzero constant term for all n in the support of Γ. By Lemma
3.5, fp(q) is a nonconstant polynomial and thus possesses at least one root. Suppose that every
root of fp(q) is a root of unity of order divisible by p. Let Υ be the collection of all roots of fp(q)
and let α be an arbitrary element of Υ. Then its minimal polynomial over Q is Puαp(q) for some
positive uα, where Puαp(q) is the cyclotomic polynomials with coefficients in Q and of order up.
From the proof of Part (I) of [5], we know that

Puαp(q) =
∏

r∈Ruαp

([p]qr)
tr
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for some collection of positive integers R and some collection of integers {tr | r ∈ R}. Hence,

fp(q) =
∏
α∈Υ

(Puαp(q))
nα =

∏
α∈Υ

(
∏

r∈Ruαp

([p]qr)
tr)nα =

∏
r∈R

([p]qr)
sr

for some collection of positive integers R and some collection of integers {sr | r ∈ R}. Let t be
a prime distinct from p such that t does not divide r for any r in R. Then it can be verified from
the proof of Theorem 2.1 above that

ft(q) :=
∏
r∈R

([t]qr)
sr

is a polynomial. It can be verified that fp(q) and ft(q) satisfy Functional Equation (1). Therefore,
they determine a unique sequence of polynomials Γ′, satisfying Functional Equation (2) with
support base P ′ = {p, t}, which contains both fp(q) and ft(q) by Theorem 1.6. Hence, Γ is the
restriction of Γ′ to AP and thus cannot be a maximal solution. This contradicts our assumption.
Thus the result follows.

(ii) Suppose P contains at least two primes and let AP be the prime semigroup generated by
P . Suppose further that P has finite complement and let P◦ be its complement, i.e, P◦ is the
collection of all primes which are not in P . If P◦ = ∅, i.e, P contains all primes, then it follows
immediately that

Γ := {([n]q)
s | n ∈ N}

is a maximal solution with support base P for each nonnegative integer s. We may assume
henceforth without loss of generality that P◦ 6= ∅. Let

u =
∏
pi∈P◦

pi.

Define

Γ := {fn(q) | fn(q) =
[n]qu

[n]q
;n ∈ AP}.

Lemma 3.6. Γ contains only polynomials and

[pi]qu

[pi]q

is not a polynomial for any prime pi in P◦.

Proof. We have R+,Γ = {u}, R−,Γ = {1} and tu = 1 = t1. Let p be any prime in P − P◦. Since
p does not divide u by construction, it can be verified that |R+,Γ|p is exactly the collection of all
distinct divisors of u each appears with multiplicity 1, and |R1,Γ|p = {1}. Hence,

|R+,Γ|p ⊇ |R1,Γ|p. (3.5)

Since p is an arbitrary prime in P − P◦, (3.5) holds for all p in P − P◦. Therefore, Γ contains
only polynomials by Theorem 2.1.
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Let pi be any prime in P◦. Then

|R+,Γ|p = {piγ | γ|
u

pi
}

where piγ appears with multiplicity 1 since tu = 1. Since t1 = 1,

|R−,Γ|p = {1}

where 1 appears with multiplicity 1. Hence, |R+,Γ|pi does not contain |R−,Γ|pi for each prime pi
in P◦. Therefore, it can be verified from Theorem 2.1 that

[pi]qu

[pi]q

is not a polynomial for any prime pi in P◦.

It follows immediately from Lemma 3.6 that Γ is a maximal solution with support base P .
Suppose

Γ := {fn(q) | n ∈ AP}

is a maximal solution of Functional Equation (2) with support base P containing at least two
primes and with field of coefficients Q. By Theorem 1.9, there exists a collection of positive
integers RΓ and a collection of integers {tr | r ∈ RΓ} such that

fn(q) =
∏
r∈RΓ

([n]qr)
tr =

∏
r∈R+,Γ

([n]qr)
tr
∏

r∈R−,Γ

([n]qr)
tr

for all n in AP where R+,Γ and R−,Γ are defined as before.

Lemma 3.7. P must have finite complement.

Proof. Since Γ is a maximal solution, it contains only polynomials by definition. Hence,

|R+,Γ|t ⊇ |R−,Γ|t

for all primes t in P by Theorem 2.1. Hence condition (1)(b) holds. Let p be any prime such that
p does not divide r for any r in RΓ, then it follows from Lemma 3.3 that

|R+,Γ|p ⊇ |R−,Γ|p.

Let T be the set containing all such primes p. By Theorem 2.1, this is equivalent to

fp(q) =
∏
r∈RΓ

([p]qr)
tr =

∏
r∈R+,Γ

([p]qr)
tr
∏

r∈R−,Γ

([pi]qr)
tr

is a polynomial for all primes p in T . Since RΓ contains only finite many elements, it follows that
T contains all but finitely many primes. As a result, P must contain T as a subset for otherwise
Γ would not be a maximal solution. In other words, P contains all but finitely many primes.
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To complete the proof of Theorem 2.2, we need to prove the following lemmas:

Lemma 3.8. Let P be a set of primes with nonempty finite complement. Then every maximal
solution to Functional Equation (2) with support base P must have the form

Γ = {fn(q) =
∏
r∈R

([n]qr)
tr =

∏
r∈R−,Γ

([n]qr)
tr
∏

r∈R+,Γ

([n]qr)
tr |n ∈ AP}

where:

• R−,Γ 6= ∅.

• For each prime p in the complement of P , |R−,Γ|p is not a subset of |R+,Γ|p.

Proof. From above, we know that there exists at least one maximal solution with support base P .
Let Γ be one such maximal solution with support base P and field of coefficients of characteristic
zero. By Theorem 1.11, Γ is generated by quantum integers. Thus there exists a collection of
positive integers RΓ and a collection of integers {tr | r ∈ RΓ} such that

Γ = {fn(q) =
∏
r∈R

([n]qr)
tr =

∏
r∈R−,Γ

([n]qr)
tr
∏

r∈R+,Γ

([n]qr)
tr |n ∈ AP}.

Suppose R−,Γ = ∅. Since the complement of P is nonempty, there exists at least one prime,
say p, in the complement of P . Then

fp(q) :=
∏
r∈R

([p]qr)
tr =

∏
r∈R−,Γ

([p]qr)
tr
∏

r∈R+,Γ

([p]qr)
tr =

∏
r∈R+,Γ

([p]qr)
tr

is a polynomial. It can be verified that fp(q) and fr(q) satisfy Functional Equation (1) for any
prime r in P . By Theorem 1.6, the sequence of polynomials

Σ = {fs(q) | s ∈ P ∪ {p}}

induces a unique sequence of polynomials Γ′ satisfying Functional Equation (2) with support
base P ′ = P ∪ {p}, which contains Σ as a subsequence. It can also be verified that Γ arises from
Γ′ by restriction of domain to AP . This contradicts the fact that Γ is a maximal solution. Hence
R−,Γ 6= ∅.

If there is some prime p in the complement of P such that

|R−,Γ|p ⊆ |R+,Γ|p,

then it can be verified from the proof of Theorem 2.1 that

fp(q) :=
∏
r∈RΓ

([p]qr)
tr =

∏
r∈R−,Γ

([p]qr)
tr
∏

r∈R+,Γ

([p]qr)
tr

is a polynomial. By a similar argument as above, it can also be verified that Γ is not a maximal
solution which contradicts the assumption. Therefore, the result follows.
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Let P be a collection of primes containing at least two primes. Suppose that there exists a
sequence of polynomials Γ which is a maximal solution to Functional Equation (2) with support
base P and with field of coefficients Q. We want to show that there are infinitely many such
sequences. If P contains all primes, then this is proven above. Thus we may assume henceforth
without loss of generality that P has nonempty complement. By the proof above, P has finite
complement and there exists a collection of positive integers RΓ and a collection of integers
{tr | r ∈ R} such that for all n in AP ,

fn(q) =
∏
r∈RΓ

([n]qr)
tr =

∏
r∈R+,Γ

([n]qr)
tr
∏

r∈R−,Γ

([n]qr)
tr

with R−,Γ 6= ∅ and |R−,Γ|p ⊆ |R+,Γ|p for all p in P .

Lemma 3.9. Each sequence of polynomials of the form

Γ′ := {f ′n(q) =
∏
r∈SΓ′

([n]qr)
sr =

∏
r∈S+,Γ′

([n]qr)
sr
∏

r∈S−,Γ′

([n]qr)
sr | n ∈ AP}

is a maximal solution of Functional Equation (2) with support base P and field of coefficients Q
where:

• SΓ′ := S+,Γ′ ∪ S−,Γ′;

• S+,Γ′ := R+,Γ ∪ C;

• C is either the empty set or a set of the form {r} where r is a positive integer such that w
does not divide r for any w in the complement of P ;

• S−,Γ′ = R−,Γ,

such that sr ≥ tr is a positive integer for each r in R+,Γ and sr = l for some positive integer l if
r ∈ C.

Proof. The only nontrivial part is that Γ′ is a maximal solution. First let us verify that Γ′ is a
solution of Functional Equation (2) for any set SΓ′ of the form given in the statement of Lemma
3.9. By carrying out a direct verification using (1.2) and Theorem 6 of [3], it can be verified
that Γ′ satisfies Functional Equation (2). Next, let us verify that for any set SΓ′ of that form, the
corresponding sequence of rational functions Γ′ contains only polynomials. If s is any prime in
P , then ∏

r∈R+,Γ

([s]qr)
tr
∏

r∈R−,Γ

([s]qr)
tr

is a polynomial by definition of Γ, or equivalently, |R−,Γ|s is a subset of |R+,Γ|s. Therefore, it
follows immediately from the definitions of S+,Γ′ and S−,Γ′ that

f ′s(q) =
∏

r∈S+,Γ′

([s]qr)
tr
∏

r∈S−,Γ

([s]qr)
tr =

∏
r∈S+,Γ′

([s]qr)
tr
∏

r∈R−,Γ

([s]qr)
tr (3.6)
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must also be a polynomial. Since Γ′ contains only polynomials if and only if f ′s(q) is a polynomial
for each prime s in P , it follows that Γ′ contains only polynomials. Finally, let us show that a set
SΓ′ of such form can be constructed so that Γ′ is maximal. It can be deduced from the definition
of S+,Γ and S−,Γ′ that

|S−,Γ′|s = |R−,Γ|s ⊆ |R+,Γ|s ⊆ |S+,Γ′ |s (3.7)

where |S+,Γ|s and |S−,Γ|s are defined in a similar fashion as |R+,Γ|s and |R−,Γ|s respectively. Note
that |S−,Γ′ |t = |R−,Γ|t for all primes t (not just the primes in P ). Note also that a prime t in the
complement of P divides an element r′ in S+,Γ′ if and only if t divides some element r in R+,Γ.
Thus we may replace |S−,Γ′|t by |R−,Γ|t for any prime t from now on. By the same argument as
before, |R−,Γ|t being a subset of |S+,Γ|t is equivalent to the fact that (3.6) is a polynomial for each
prime t (with t replacing s). In particular, (3.7) holds for each prime s in P . Let p be a prime not
in P . Then ∏

r∈R+,Γ

([p]qr)
tr
∏

r∈R−,Γ

([p]qr)
tr

is not a polynomial since Γ is maximal. Therefore, |R−,Γ|p is not a subset of |R+,Γ|p. Since Γ

contains only polynomials, condition (1)(b) of Theorem 2.1 is satisfied. Therefore, p must divide
some r in R+,Γ by Lemma 3.3. Write:

|S+,Γ′ |p := {psp,rγ | r ∈ S+,Γ′ ; γ|
r

psp,r
} = {psp,rγ | r ∈ S(1)

+,Γ′ ; γ|
r

psp,r
} ∪ {γ | r ∈ S(2)

+,Γ′ ; γ|r};
(3.8)

|R+,Γ|p := {psp,rγ | r ∈ R+,Γ; γ| r
psp,r
} = {psp,rγ | r ∈ R(1)

+,Γ; γ| r
psp,r
} ∪ {γ | r ∈ R(2)

+,Γ; γ|r};
(3.9)

|R−,Γ|p := {psp,rγ | r ∈ R−,Γ; γ| r
psp,r
} = {psp,rγ | r ∈ R(1)

−,Γ; γ| r
psp,r
} ∪ {γ | r ∈ R(2)

−,Γ; γ|r}
(3.10)

where:

• psp,rγ appears tr times in |R+,Γ|p (resp. in |R−,Γ|p) if tr > 0 (resp. if tr < 0).

• sp,r ≥ 1 for at least one r in R+,Γ.

• S(1)
+,Γ′ , R

(1)
+,Γ and R(1)

−,Γ consist of all r in S+,Γ, R+,Γ and in R−,Γ correspondingly which are
divisible by p.

• S(2)
+,Γ′ , R

(2)
+,Γ and R(2)

−,Γ consist of all r in S+,Γ, R+,Γ and in R−,Γ correspondingly which are
not divisible by p.

Note that R(1)
+,Γ 6= ∅. If R(2)

−,Γ 6= ∅, then define C := ∅. Otherwise, let C := {r} for some
positive integer r such that w does not divide r for any prime w in the complement of P . As a
result, S(2)

+,Γ′ 6= ∅ since p does not divide the element r in C by construction.
As the unions in (3.8), (3.9) and (3.10) are disjoint, it can be verified from the definition of

S+,Γ′ that
{psp,rγ | r ∈ R(1)

+,Γ; γ| r
psp,r
} ⊆ {psp,rγ | r ∈ S(1)

+,Γ′ ; γ|
r

psp,r
}

and
{γ | r ∈ R(2)

+,Γ; γ|r} ⊆ {γ | r ∈ S(2)
+,Γ′ ; γ|r}.
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Moreover, it can be verified from our construction that if α appears in {psp,rγ | r ∈ S(1)
+,Γ; γ| r

psp,r
}

(resp. in {γ | r ∈ S(2)
+,Γ; γ|r}) with multiplicity m > 0 (resp. n > 0), then α must appear in

{psp,rγ | r ∈ R(1)
+,Γ; γ| r

psp,r
} (resp. in {γ | r ∈ R(2)

+,Γ; γ|r}) with multiplicity u (resp. v) such that
m ≥ u > 0 and n ≥ v > 0. Hence if there exists an element λ in

{psp,rγ | r ∈ R(1)
−,Γ; γ| r

psp,r
}

which does not appear in
{psp,rγ | r ∈ R(1)

+,Γ; γ| r
psp,r
},

then λ does not appear in
{psp,rγ | r ∈ S(1)

+,Γ; γ| r
psp,r
}.

Since P has finite complement, there exists a prime z in P such that z does not divide r for
any r in RΓ′ . Then

|S+,Γ|z = {γ | r ∈ S+,Γ; γ|r} = {pwrγ | r ∈ S(1)
+,Γ; γ| r

psp,r
} ∪ {γ | r ∈ S(2)

+,Γ; γ|r}; (3.11)

|R+,Γ|z = {γ | r ∈ R+,Γ; γ|r} = {pwrγ | r ∈ R(1)
+,Γ; γ| r

psp,r
} ∪ {γ | r ∈ R(2)

+,Γ; γ|r}; (3.12)

|R−,Γ|z = {γ | r ∈ R−,Γ; γ|r} = {pwrγ | r ∈ R(1)
−,Γ; γ| r

psp,r
} ∪ {γ | r ∈ R(2)

−,Γ; γ|r}, (3.13)

where 0 ≤ wr ≤ sp,r for each r, since sz,r = 0 for all r in SΓ′ . Note that the unions in (3.11)
(3.12) and (3.13) are not necessarily disjoint. Since z is in P , (3.7) implies that if γ0 satisfies
either of the following properties: (i) γ0|r for some r in R(2)

−,Γ; or (ii) γ0| r
psp,r

for some r in R(1)
−,Γ,

then
0 < m1,γ0 + n1,γ0 ≤ m2,γ0 + n2,γ0 ≤ m3,γ0 + n3,γ0 ,

where:

• m1,γ0 , m2,γ0 and m3,γ0 are the multiplicities of γ0 in {γ | r ∈ R
(2)
−,Γ; γ|r}, {γ | r ∈

R
(2)
+,Γ; γ|r} and {γ | r ∈ S(2)

+,Γ; γ|r} correspondingly.

• n1,γ0 , n2,γ0 , and n3,γ0 are the multiplicities of γ0 in {pwγ | 0 ≤ w ≤ sp,r; r ∈ R(1)
−,Γ; γ| r

psp,r
},

{pwγ | r ∈ R
(1)
+,Γ; γ| r

psp,r
; 0 ≤ w ≤ sp,r}, and {pwγ | r ∈ S(1)

+,Γ; γ| r
psp,r

; 0 ≤ w ≤ sp,r}
correspondingly.

• m1,γ0 +n1,γ0 , m2,γ0 +n2,γ0 , and m3,γ0 +n3,γ0 are the multiplicities of γ0 in |R−,Γ|z, |R+,Γ|z,
and |S+,Γ|z correspondingly.

Note that mi,γ0’s and ni,γ0’s may be zero. It can be verified that such a γ0 also appears in
|R−,Γ|p and m1,γ0 , m2,γ0 and m3,γ0 are also the multiplicities of γ0 in the sets {γ | r ∈ R(2)

−,Γ; γ|r},
{γ | r ∈ R(2)

+,Γ; γ|r}, and {γ | r ∈ S(2)
+,Γ; γ|r} of the equations (3.10), (3.9) and (3.8) correspond-

ingly.
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If m1,γ0 > m2,γ0 for one such γ0, then R(2)
−,Γ 6= ∅ and thus C = ∅ and {γ | r ∈ R(2)

−,Γ; γ|r} is
not a subset of {γ | r ∈ R(2)

+,Γ; γ|r}. Define:

Γ′ := {f ′n(q) =
∏
r∈SΓ′

([n]qr)
sr =

∏
r∈S+,Γ′

([n]qr)
sr
∏

r∈S−,Γ′

([n]qr)
sr | n ∈ AP} (3.14)

with sr > tr for each r in R(1)
+,Γ and sr = tr for each r in R(2)

+,Γ. Then Γ′ 6= Γ since R(1)
+,Γ 6= ∅. It

can be verified that
{γ | r ∈ S(2)

+,Γ′ ; γ|r} = {γ | r ∈ R(2)
+,Γ; γ|r}, (3.15)

where the set on the left hand side of (3.15) is the set that appears in (3.8) and the set of the right
hand side of (3.15) is the set that appears in (3.9) (and (3.12)), as well as

{psp,rγ | r ∈ S(1)
+,Γ′ ; γ|

r

psp,r
} ∩ {γ | r ∈ R(2)

−,Γ; γ|r} = ∅, (3.16)

where the set on the left hand side of ∩ in (3.16) is the set appears that in (3.8) and the set
of the right hand side of ∩ in (3.16) is the set that appears in (3.10) (and (3.13)). As a result,
|R−,Γ|p = |S−,Γ|p is not a subset of |S+,Γ′|p, and thus it follows from Theorem 2.1 that

f ′p(q) =
∏
r∈SΓ′

([p]qr)
sr =

∏
r∈S+,Γ′

([p]qr)
sr
∏

r∈S−,Γ′

([p]qr)
sr

is not a polynomial. Therefore, Γ′ is a maximal solution with support base P . Since there are
infinitely many distinct sequences of polynomials Γ′ of the form defined in (3.14), there are
infinitely many maximal solution with support base P and coefficients in Q as required.

If m1,γ0 ≤ m2,γ0 for all such γ0, then

{γ | r ∈ R(2)
−,Γ; γ|r} ⊆ {γ | r ∈ R(2)

+,Γ; γ|r} ⊆ {γ | r ∈ S(2)
+,Γ′ ; γ|r}. (3.17)

By construction, S(2)
+,Γ′ 6= ∅ whether or not R(2)

−,Γ is empty.
Since

{psp,rγ | r ∈ R(1)
−,Γ; γ| r

psp,r
} ∩ {γ | r ∈ S(2)

+,Γ′ ; γ|r} = ∅,

|R−,Γ|p ⊆ |S+,Γ′|p

if and only if
{psp,rγ | r ∈ R(1)

−,Γ; γ| r
psp,r
} ⊆ {psp,rγ | r ∈ S(1)

+,Γ′ ; γ|
r

psp,r
}. (3.18)

That is, f ′p(q) is a polynomial if and only if (3.18) holds. By the maximality of Γ and (3.17),

{psp,rγ | r ∈ R(1)
−,Γ; γ| r

psp,r
}

is not a subset of {psp,rγ | r ∈ R(1)
+,Γ; γ| r

psp,r
}, i.e.,

{psp,rγ | r ∈ R(1)
−,Γ; γ| r

psp,r
}∩{psp,rγ | r ∈ R(1)

+,Γ; γ| r
psp,r
} 6= {psp,rγ | r ∈ R(1)

−,Γ; γ| r
psp,r
}. (3.19)
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Define:

Γ′ := {f ′n(q) =
∏
r∈SΓ′

([n]qr)
sr =

∏
r∈S+,Γ′

([n]qr)
sr
∏

r∈S−,Γ′

([n]qr)
sr | n ∈ AP} (3.20)

with sr = tr for each r in S(1)
+,Γ and sr > tr for each r in S(2)

+,Γ. Together with (3.19), it follows
that (3.18) does not hold. Therefore, the polynomial in Γ′ defined in (3.20) which is indexed by
p,

f ′p(q) =
∏
r∈SΓ′

([p]qr)
sr =

∏
r∈S+,Γ′

([p]qr)
sr
∏

r∈S−,Γ′

([p]qr)
sr

is not a polynomial. Therefore, the sequence of polynomials Γ′ defined in (3.20) is a maximal
solution.

If R(2)
+,Γ 6= ∅, then it follows immediately from the construction in (3.20) that Γ′ 6= Γ. If

R
(2)
+,Γ = ∅, then Γ′ 6= Γ since

f ′n(q) = fn(q)([n]qr)
l

for each n inAP where r is in C and sr = l by construction. In the former case, there are infinitely
many choices for sr such that sr > tr for each r in R(2)

+,Γ. In the latter case, there are infinitely
many choices for the integer l. Thus the proof of Lemma 3.9 is complete.

The proof of Theorem 2.2 is therefore complete.
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