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1 Introduction

Recall that the classical Euler dilogarithm is defined by

Li2(z) =
∞∑
n=1

zn

n2
|z| < 1

=

∫ z

0

− log(1− t)
t

dt z ∈ C\[1,∞)

after analytic continuation. The Bloch-Wigner dilogarithm

D(z) = Im(Li2(z)) + log |z| arg(1− z)

is well defined independent of path used to continue Li2 and arg. For a torus C/Λ, Λ = [ω1, ω2]

corresponding to a point τ inH, we have the q-symmetrized, or elliptic, dilogarithm

Dq(z) =
∑
n∈Z

D(zqn) q = exp(2πiτ) z ∈ C×/qZ ∼= C/Λ.

In their paper on Zagier’s Conjecture, Goncharov and Levin prove the following theorem [3,
Theorem 1.1] about the value at s = 2 of the L-function of an elliptic curve:
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Theorem. Let E be a (modular) elliptic curve over Q. Then there exists a Q-rational divisor
P =

∑
ai(Pi) satisfying ∑

aiPi ⊗ Pi ⊗ Pi = 0 in S3J(E), (a)

For any valuation v of the field Q(P), and hv the corresponding canonical height,∑
aihv(Pi) · Pi = 0 in J(E)⊗ R, (b)

as well as a certain third condition (c) at primes where E has split multiplicative reduction. For
such a divisor

L(E, 2) ∼Q× πDq(P).

The authors comment

“The conditions (a) and (b) were guessed by Zagier several years ago after study-
ing the results of the computer experiments with Q-rational points on some elliptic
curves, which he did with H. Cohen.”

As a consequence, they deduce [3, Corollary 1.3]

Corollary. Let E be an elliptic curve over Q. Let us assume that the image of K2(E)Z⊗Q under
the regulator map is L(E, 2) · Q. (This is part of the Bloch-Beilinson conjecture.) Then for any
Q-rational divisor P on E(Q̄) satisfying the conditions (a), (b), and (c) above, one has

r · L(E, 2) = πDq(P)

where r is a rational number, perhaps equal to 0.

They remark

“Theorem 1.1 and Corollary 1.3 have analogs for an elliptic curve over any number
field. Its formulation is an easy exercise to the reader.”

In [3, §1.3] they work out an example for the elliptic curve given by y2 − y = x3 − x.
Nonetheless, examples in this subject are scarce and the theory is more than a little intimidating.
The purpose of this note is to work out an example for a curve over a number field, following the
philosophy of [5],

“In general, the more concrete one is able to make the [Borel] regulator map, the
more explicit the information one is able to extract from it.”

All of the calculations were done with PARI.
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2 Notation

Let F be the field Q(
√

5), and w = 1+
√
5

2
. Consider the elliptic curve E defined over F :

E : y2 + y = x3 + w x2 − (93 + 163w)x+ (669 + 1076w).

The discriminant is −5373 = −42875, and the j-invariant is

j(E) = −32604160− 52756480w = (−128− 224w)3.

This is equal to j(OK), where K = Q(
√
−35). Thus the curve has complex multiplication by the

ring of integers OK . The two embeddings of F into R give two lattices

Λ = [1, τ ], 35τ 2 + 35τ + 9 = 0, Λ′ = [1, τ ′], 7τ ′
2

+ 7τ ′ + 3 = 0.

The fact that τ ′ = 5τ+2 show that E is isogenous to its Galois conjugate, so it is a Q-curve in the
sense of [4]. K has class number 2 since the j-invariant is quadratic, while F has class number
1. Note that since E has complex multiplication, it has only additive bad reduction and we can
ignore condition (c) in the theorem.

3 L-function computation

The curve E is in fact the canonical Q-curve (Theorem.11.2.4 of [4]) for this discriminant, which
is convenient for calculating values of the L-function. The Hecke character ψ on the Hilbert class
field H factors through norms from H to K. The Euler product at s = 2 converges too slowly to
be of use. So we use the functional equation to convert the value at s = 2 to the leading Taylor
coefficient at s = 0. Since the field is quadratic there is a second order zero at 0. Thus we are
computing the value L(E, 0)(2), or up to appropriate powers of π and rational multiples, the value
of the ‘completed’ Λ(E, s) at s = 0.

Following ideas of Cremona [1] we write the L function as the Mellin transform of a Maass
form on H3, with a Fourier series involving K-Bessel functions. Although K has class number
2, the Maass form is a ‘CM’form, so its Fourier coefficients are supported on the principal ideal
class. We split the integral at the symmetry point, use the functional equation, and integrate by
parts. To get 28 digits of accuracy we computed the Dirichlet series coefficients for primes less
than 30,000. The values of Λ(E, s) at s = 0 require evaluating, for 30,000 different x values,∫ ∞

x

K0(t)/t dt.

For x ≤ 3 or 15 ≤ x, we can take an asymptotic expansion forK0(t) and integrate term by term to
get an asymptotic expansion for the function. For 3 < x < 15, we need to numerically integrate
from x to the next integer ceil(x), and use a table lookup for

∫∞
ceil(x)K0(t)/t dt. Eventually we

find
L(E, 0)(2) = 691.9884130215329129184499757.
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[0]P + [1]Q [12− w, 32− 20w]

[1]P + [0]Q [7 + 9w, 17 + 35w]

[0]P + [2]Q [−4− 11w, 11 + 8w]

[1]P + [1]Q [7 + 2w,−11 + 7w]

[2]P + [0]Q [3 + 5w, 2 + w]

[1]P + [2]Q [42− 26w,−333 + 175w]

[2]P + [1]Q [2 + 4w, 2 + 5w]

[2]P + [2]Q [3 + 4w,−4− w]

[3]P − [1]Q [1624− 957w,−75625 + 46340w]

[3]P + [1]Q [−5w, 24 + 28w]

[4]P + [1]Q [27− 26w,−223 + 95w]

[4]P + [2]Q [46− 22w, 331− 205w]

[4]P + [3]Q [67 + 99w, 957 + 1525w]

[5]P + [4]Q [250362− 154726w,−147263008 + 91013545w]

[1]P − [1]Q [(14 + 24w)/5, ...]

[1]P − [2]Q [(2527 + 6584w)/3481, ...]

[3]P + [0]Q [(217− 31w)/16, ...]

[3]P + [2]Q [(392 + 529w)/121, ...]

[4]P + [4]Q [(13627 + 13872w)/3481, ...]

[5]P + [2]Q [(17367 + 12464w)/3481, ...]

[6]P + [0]Q [(792753 + 52969w)/222784, ...]

[6]P + [4]Q [(1700 + 1357w)/605, ...]

Table 1:

4 Regulator computation

Let P = [7+9w, 17+35w] and letQ = [12−w, 32−20w]. These points seem to generate the free
part of the group E(F ). The curve has a large number of integral points, (1)-(14) in Table 1. In
order to find solutions ai to the equations (a), (b) in the construction of Goncharov and Levin, one
needs a relatively large number of points whose local heights are supported on a relatively small
number of primes. We consider also the points (15)-(22) in Table 1. The local nonarchimedean
height functions are supported on the primes 2,

√
5, 7, π11 and π59, where π11 and π59 are primes

above 11 and 59 in OF .

Since E has rank (at least) 2, it will be convenient to revise our notation for a divisor

P =
∑
k,l

ak,l ([k] · P + [l] ·Q) ,

where the pair (k, l) is restricted to the values in Table 1.

Proposition. Corresponding to column j in Table 2 above we define the divisor

P(j) =
∑
k,l

ak,l,j([k]P + [l]Q).
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3 7 -8 -5 -10 -7 -8 7
2 -23 -11 -45 -48 18 -181 -33
1 -1 -9 -4 -8 1 -33 3
6 -1 -11 15 -30 1 -10 13
3 5 -12 -17 -13 -1 -45 -7
-2 -1 16 3 -4 -3 37 0
-2 -4 0 14 -14 4 -14 26
-3 -1 18 1 26 7 52 -22
0 0 1 0 -2 0 -1 1
-2 1 0 1 0 -1 1 0
0 0 -1 -2 -1 0 5 -2
0 -1 1 0 0 -3 -2 -1
1 1 -1 1 -1 -1 1 -1
0 0 -1 0 1 1 -3 0
0 -2 0 2 0 2 2 0
0 0 -2 -3 -5 -1 -8 0
0 0 0 -6 -9 0 -9 -3
0 0 0 0 0 0 0 -4
0 0 -2 -1 -2 -1 -5 1
0 0 2 -1 -1 1 2 -2
0 0 0 2 3 0 3 1
0 0 0 0 0 0 0 2

Table 2: 8 divisors supported on the 22 points

The 8 dimensional span of these divisors satisfies the equations defined over Z (i.e. (a) and, for
nonarchimedean heights, (b) ). The equations defined over R, ((b) for archimedean heights) are
satisfied to 100 digits of accuracy.

Proof. The condition (a) becomes the four equations∑
ak,l · k3 = 0,

∑
ak,l · k2l = 0,

∑
ak,l · kl2 = 0,

∑
ak,l · l3 = 0.

Meanwhile condition (b) becomes, for the nonarchimedean heights,∑
ak,lhv([k]P + [l]Q) · k = 0,∑
ak,lhv([k]P + [l]Q) · l = 0,

ten more equations as v ranges over the five primes 2,
√

5, 7, π11 and π59. To compute the height
functions, we used [7] and the reference therein, particularly [6]. These equations are defined
over Z, so we get integral solutions. Surprisingly, the solution space is 10, not 8 dimensional.

In this solution space we next seek integral solutions to the equations over R∑
ak,lh∞([k]P + [l]Q) · k = 0∑
ak,lh∞([k]P + [l]Q) · l = 0,
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1.7× 10−100 −2.9× 10−105

3.657296793764310936796018961 −4.861051673717091496858129462

−3.657296793764310936796018961 4.861051673717091496858129462

25.64710971025614581418182019 1.387883495576657586500860340

3.657296793764310936796018961 −4.861051673717091496858129462

−3.657296793764310936796018961 4.861051673717091496858129462

35.41524521159629806450776657 0.2301607695298462830484372999

29.30440650402045675097783915 −3.473168178140433910357269121

Table 3: Regulators in R2

for each of the two archimedean valuations. Since the condition (a) kills the global height, it
suffices to find solutions for just one infinite prime, and the other one serves as a check that
our calculation is correct. Finding integral solutions to equations given by real (floating point)
numbers is tricky. The easiest way seems to be (following Zagier [9]) to use the LLL algorithm.

For each point [k]P +[l]Q we compute zk,l modulo Λ and z′k,l modulo Λ′. Let q = exp(2πiτ),
q′ = exp(2πiτ ′). Then corresponding to column j in Table 2 we compute the vector in R2 given
by:

{reg(P(j)), reg(P(j))′} = ∑
k,l

ak,l,j{Dq(exp(2πizk,l)/π,Dq′(exp(2πiz′k,l)/π}.

Working with 100 digits, (displaying 28), we get the row vectors in Table 3.

5 Comparison

With 8 regulator vectors in R2, there are, up to sign, 28 choices for a 2 × 2 determinant Rm,n of
the rows m and n, of which 13 visibly have determinant equal 0. For the remaining 15 pairs we
get that Rm,n/L(E, 0)(2) appears to be rational. The pair (4, 7) gives

−0.06250000000000000000000000268 ≈ − 1

16

while (2, 7), (3, 7), (5, 7), (6, 7) all give plus or minus

0.2500000000000000000000000107 ≈ 1

4

and (2, 4), (2, 8), (3, 4), (3, 8), (4, 5), (4, 6), (4, 8), (5, 8), (6, 8), and (7, 8) all give plus or minus

0.1875000000000000000000000080 ≈ 3

16
.

The close agreement with a rational number of small denominator serves as confirmation the
calculations are correct.
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