Solving algebraic equations with Integer Structure Analysis

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney
Sydney, NSW 2006, Australia

² Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia

e-mails: tshannon38@gmail.com, anthony.shannon@uts.edu.au

Abstract: A new alternative method for solving algebraic equations is expounded. Integer Structure Analysis is used with an emphasis on parity, right-end-digits of the components and the modular ring \mathbb{Z}_5.

Keywords: Modular rings, Quadratic equations, Cubic equations, Simultaneous equations, Complex roots, Integer Structure Analysis.

AMS Classification: 11A07.

1 Introduction

Many methods exist for finding real and complex solutions of algebraic equations such as quadratic, cubic and simultaneous equations with two and three variables [1, 3]. Integer Structure Analysis (ISA) can be used with these traditional methods to illuminate some of the related underlying number theoretic foundations [6]. In this paper, we provide examples of various types of equations using the modular ring \mathbb{Z}_5 and right-end-digits (REDs) (Table 1). In this ring each class has a characteristic RED structure that simplifies analysis.

<table>
<thead>
<tr>
<th>Row</th>
<th>$f(r)$</th>
<th>$5r_0$</th>
<th>$5r_1 + 1$</th>
<th>$5r_2 + 2$</th>
<th>$5r_3 + 3$</th>
<th>$5r_4 + 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>$\overline{0}_5$</td>
<td>$\overline{1}_5$</td>
<td>$\overline{2}_5$</td>
<td>$\overline{3}_5$</td>
<td>$\overline{4}_5$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

(table continues)
Table 1. Rows of Z_5

<table>
<thead>
<tr>
<th>Row</th>
<th>$f(r)$</th>
<th>$5r_0$</th>
<th>$5r_1 + 1$</th>
<th>$5r_2 + 2$</th>
<th>$5r_3 + 3$</th>
<th>$5r_4 + 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>0_5</td>
<td>1_5</td>
<td>2_5</td>
<td>3_5</td>
<td>4_5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

2 Quadratic equations

In the following sections we solve some simple algebraic equations with an ISA approach to show how it sheds some light on the underlying number theoretic structure.

1. \[5x^2 - 17x + 14 = 0.\] (2.1)

If x is odd then $x^* = 7$, and if x is even, then $x^* = 2$, so

\[x = 5r_2 + 2.\] (2.2)

Substituting (2.2) into (2.1) yields

\[25r_2^2 - 3r_2 = 0.\] (2.3)

Thus $r_2 = 0$ or $-3/25$, and so $x = 2$ or $7/5$.

2. \[f(x) \equiv x^2 - 11x + 30 = 0.\] (2.4)

x can be odd or even.

<table>
<thead>
<tr>
<th>x^*</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>x^*</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x^2)^*$</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>$(x^2)^*$</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>$(-11x)^*$</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
<td>-9</td>
<td>$(-11x)^*$</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
</tr>
<tr>
<td>$(30)^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$(30)^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(f(x))^*$</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>$(f(x))^*$</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: Solution structure for Equation (2.4)

Thus $x^* = 1$ or 5 and $x^* = 0$ or 6, but $x \neq 1$ or 0, and so $x = 5$ or 6. Alternatively, use Z_5, take $x = 5r + a$ and substitute into (2.4). If $a = 6$, the constant 30 is eliminated and we obtain

\[25r^2 + 5r = 0.\] (2.5)

Thus, $r = 0$ or $-1/5$ which gives $x = 6$ or 5.

55
3 Cubic equations

1. \(x^3 + 4x - 5 = 0. \) \hspace{1cm} (3.1)

\(x \) must be odd.

<table>
<thead>
<tr>
<th>(x^*)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x^3)^*)</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>((4x)^*)</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>((-5)^*)</td>
<td>-5</td>
<td>-5</td>
<td>-5</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>((f(x))^*)</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Structure for Equation (3.1)

Thus \(x^* = 1, 5 \) or \(9 \), but 5 and 9 are too large, so \(x^* = 1 \), and

\(x = 5r_1 + 1. \) \hspace{1cm} (3.2)

Substituting into (3.1) yields \(r_1 = 0 \) or

\[25r_1^2 + 15r_1 + 7 = 0. \] \hspace{1cm} (3.3)

Then using \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we get

\[\eta = \frac{-3 \pm \sqrt{19i}}{10} \] \hspace{1cm} (3.4)

so that

\[x = 1, \frac{-1 \pm \sqrt{19i}}{2} \]

2. \(x^3 + 5x^2 + 3x - 9 = 0. \) \hspace{1cm} (3.5)

<table>
<thead>
<tr>
<th>(x^*)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>((5x^2)^*)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>((3x)^*)</td>
<td>±3</td>
<td>±9</td>
<td>±5</td>
<td>±1</td>
<td>±7</td>
</tr>
<tr>
<td>((x^3)^*)</td>
<td>±1</td>
<td>±7</td>
<td>±5</td>
<td>±3</td>
<td>±9</td>
</tr>
<tr>
<td>((-q)^*)</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>((f(x))^*)</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4: Structure for Equation (3.5)

From Table 4, \(x^* = 1 \) or \(7 \), but 7 is too large so

\(x = 5r_1 + 1. \) \hspace{1cm} (3.6)

Substituting into (3.5) gives \(r_1 = 0 \) and

\[25r_1^2 + 40r_1 + 16 = 0. \] \hspace{1cm} (3.7)

Thus \(r_1 = 0 \) or \(-4/5 \), and so \(x = 1 \) or \(-3 \). When \(x \) is negative, \(x^* = -3 \), and so \(x = 1, -3, -3 \). For other non-conventional number theoretic approaches to cubic equations see [2, 4, 5, 6].
4 Simultaneous equations

4.1 Two variables

1. \[3x + 7y = 27\]
 \[5x + 2y = 16\]
 \(x\) must be even from (4.2), so from (4.1) \(y\) must be odd. Since \((5x)^* = 0\) and \(y\) is odd, only \(y^* = 3\) or \((2y)^* = 6\). Thus \(y = 3, 13, 23, ...\) but only \(y = 3\) fits, so that the solution is \(x = 2, y = 3\).

2. \[x^2 + 4y^2 + 80 = 15x + 30y\]
 \(xy = 6\)
 From (4.4) \(x = 6/y\) which, when substituted into (4.3), gives \[4y^4 - 30y^3 + 80y^2 - 90y + 36 = 0\]
The RED right hand side is zero, so \((4y^4 + 36)^* = 0\). Hence, \(y^* = 1, 2, 3\) which fits (4.5) and so yields \(x = 6, 3, 2\). But Equation (4.3) should have 4 roots, so we substitute (4.4) into (4.3) to get \[x^4 - 15x^3 + 144 = 0\]
Thus, \((x^4 - 15x^3 + 144)^* = 0\). (4.7)

Apart from \(x = 6, 3, 2\), \(x^* = 4\) yields \((6 - 0 + 4)^* = 0\), so that \(x = 4\) and \(y = 3/2\). Hence, \(\{(x, y)\} = \{(6,1),(3,2),(2,3),(4,3/2)\}\).

3. \[3x^2 - 5y^2 = 28\]
 \[3xy - 4y^2 = 8\]
 From (4.8) we see that \(x\) and \(y\) must have the same parity, and then from (4.9) that they must both be even. Thus \((x^2)^* = 6\) only, but \((y^2)^* = 0, 4\) or 6. Hence \(x = \pm 4\) or \(\pm 6\), but \(y = 0, \pm 2, \pm 8, \pm 4\) or \(\pm 6\). Since \(y < x, y^* \neq 6\) or 8 and \(y \neq 0\). Therefore,

 \[x = \pm 4, \pm 6\] and \(y = \pm 2, \pm 4\).

4.2 Three variables

1. \[x + 2y + 2z = 11\]
 \[2x + y + z = 7\]
 \[3x + 4y + z = 14\]
 From (4.10) \(x\) is odd; from (4.12) \(z\) is odd, and so from (4.11) \(y\) is even. If we then subtract (4.11) from (4.12) we get \[x + 3y = 7\].
The \(x^*, y^*\) values which satisfy (4.13) are shown in Table 5.
Thus,

\[x = 1, y = 2, z = 3. \]

Note that if \(x = 5r + a \) and \(y = 5r + b \), then \(a = 1 \) and \(b = 2 \), so that the solution classes are \(x \in \mathbb{T}_5, y \in \mathbb{Z}_5, z \in \mathbb{Z}_5 \).

2. \[\begin{align*} x + 4y + 3z &= 17 \quad (4.14) \\ 3x + 3y + z &= 16 \quad (4.15) \\ 2x + 2y + z &= 11 \quad (4.16) \end{align*} \]

From (4.16) \(z \) is odd, so from (4.14) \(x \) is even, and from (4.15) \(y \) is odd. If we then subtract (4.16) from twice (4.14) we get

\[6y + 5z = 23 \quad (4.17) \]

Thus \(y^* = 3 \) and \(y = 3 \) fits so solution set is

\[x = 2, y = 3, z = 1. \]

3. \[\begin{align*} 2x + 3y + 4z &= 20 \quad (4.18) \\ 3x + 4y + 5z &= 26 \quad (4.19) \\ 3x + 5y + 6z &= 31 \quad (4.20) \end{align*} \]

We subtract (4.19) from (4.20) to get

\[y + z = 5 \quad (4.21) \]

From (4.18), \(y \) is even, so from (4.21) \(z \) is odd and from (4.20) \(x \) is odd. Table 6 shows the values for \(y^*, z^* \) which are compatible with (4.21).

<table>
<thead>
<tr>
<th>(y^*)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z^*)</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6: \(y^*, z^* \) values for (4.21)

Hence, \(y \neq 6, 8 \) (too large) and \(y \neq 0, 4 \) from Equations (4.18) and (4.20). Thus the solution set is

\[x = 1, y = 2, z = 3. \]
5 Complex roots

1. \[x^4 + x^3 - 6x^2 - 15x - 9 = 0. \] (5.1)

Let \(x = 5r + a \). Then, if the constant in (5.1) is to be cancelled when this value of \(x \) is substituted, \(a = 3 \), which yields \(r = 0 \) and \(x = 3 \). Equation (5.1) now reduces to

\[x^3 + 4x^2 + 6x + 3 = 0. \] (5.2)

Again let \(x = 5r + a \) and substitute into (5.2). Elimination of the constant occurs when \(a = -1 \), and since \(r = 0 \) is a root then \(x = -1 \). Equation (5.2) then reduces to

\[x^2 + 3x + 3 = 0. \] (5.3)

We then use \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) again to get the complex roots, with the complete solution set

\[x = -1, 3, \frac{-3 \pm \sqrt{3}i}{2} \]

Note that \(5r - 1 = (5(s - 1) + 4) \in \mathbb{Z}_s \).

2. \[x^4 - 3x^3 + 12x - 16 = 0. \] (5.4)

Let \(x = 5r + a \). Elimination of the constant yields \(a = \pm 2 \) which, when substituted into (5.4) both reduce the latter to

\[x^3 - x^2 - 2x + 8 = 0. \] (5.5)

and \(r = 0 \) is one solution so that \(x = \pm 2 \).

If \(x = 5r - 2 \) (to eliminate 8), then (5.5) becomes

\[25r^2 - 35r + 14 = 0. \] (5.6)

so that

\[r = \frac{7 \pm \sqrt{7}i}{10}, \] (5.7)

or \(x = 5r - 2 = \frac{3 \pm \sqrt{7}i}{2} \). The solution set is then \(\{\pm 2, \frac{3 \pm \sqrt{7}i}{2} \} \).

3. \[x^3 + 1 = 0. \] (5.8)

With \(x = 5r - 1 \) the constant is eliminated. Substitution into (5.8) yields \(r = 0 \) and

\[25r^2 - 15r + 3 = 0. \] (5.9)

or

\[r = \frac{3 \pm \sqrt{3}i}{10}, \] (5.10)

so that the solution set is \(\{-1, (3 \pm \sqrt{3}i)/2 \} \). (Note that \(5r - 2 = (5(s - 1) + 3) \in \mathbb{Z}_s \) in row \((s - 1) \).)
6 Final comments

Students should find the approach outlined here in the examples an interesting alternative to what can sometimes degenerate into a ‘symbol-shoving’ exercise. There is also potential for project work which extends this type of analysis to other types of equations and using other modular rings [6].

References