Solving algebraic equations with Integer Structure Analysis

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney Sydney, NSW 2006, Australia

² Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia e-mails: tshannon38@gmail.com, anthony.shannon@uts.edu.au

Abstract: A new alternative method for solving algebraic equations is expounded. Integer Structure Analysis is used with an emphasis on parity, right-end-digits of the components and the modular ring Z_5 .

Keywords: Modular rings, Quadratic equations, Cubic equations, Simultaneous equations, Complex roots, Integer Structure Analysis.

AMS Classification: 11A07.

1 Introduction

Many methods exist for finding real and complex solutions of algebraic equations such as quadratic, cubic and simultaneous equations with two and three variables [1, 3]. Integer Structure Analysis (ISA) can be used with these traditional methods to illuminate some of the related underlying number theoretic foundations [6]. In this paper, we provide examples of various types of equations using the modular ring Z_5 and right-end-digits (REDs) (Table 1). In this ring each class has a characteristic RED structure that simplifies analysis.

Row	f(r)	$5r_0$	$5r_1 + 1$	$5r_2 + 2$	$5r_3 + 3$	$5r_4 + 4$
	Class	$\overline{0}_5$	Ī5	$\overline{2}_{5}$	$\overline{3}_5$	$\overline{4}_5$
0		0	1	2	3	4
1		5	6	7	8	9
2		10	11	12	13	14
3		15	16	17	18	19
4		20	21	22	23	24

(table continues)

Row	f(r)	$5r_0$	$5r_1 + 1$	$5r_2 + 2$	$5r_3 + 3$	$5r_4 + 4$
K0 w	Class	$\overline{0}_5$	Ī5	$\overline{2}_{5}$	$\overline{3}_5$	$\overline{4}_5$
5		25	26	27	28	29
6		30	31	32	33	34
7		35	36	37	38	39
8		40	41	42	43	44
9		45	46	47	48	49
10		50	51	52	53	54

Table 1. Rows of Z_5

2 Quadratic equations

In the following sections we solve some simple algebraic equations with an ISA approach to show how it sheds some light on the underlying number theoretic structure.

1.
$$5x^2 - 17x + 14 = 0.$$
 (2.1)

If x is odd then $x^* = 7$, and if x is even, then $x^* = 2$, so

$$x = 5r_2 + 2. (2.2)$$

Substituting (2.2) into (2.1) yields

$$25r_2^2 - 3r_2 = 0. (2.3)$$

Thus $r_2 = 0$ or -3/25, and so x = 2 or 7/5.

2.
$$f(x) \equiv x^2 - 11x + 30 = 0.$$
 (2.4)

x can be odd or even.

<i>x</i> *	1	3	5	7	9	<i>x</i> *	0	2	4	6	8
$(x^{2})^{*}$	1	9	5	9	1	$(x^{2})^{*}$	0	4	6	6	4
$(-11x)^*$	-1	-3	-5	-7	-9	$(-11x)^*$	0	-2	-4	-6	-8
(30)*	0	0	0	0	0	(30)*	0	0	0	0	0
$(f(x))^*$	0	6	0	2	8	$(f(x))^*$	0	2	2	0	6

Table 2: Solution structure for Equation (2.4)

Thus $x^* = 1$ or 5 and $x^* = 0$ or 6, but $x \neq 1$ or 0, and so x = 5 or 6. Alternatively, use Z_5 , take x = 5r + a and substitute into (2.4). If a = 6, the constant 30 is eliminated and we obtain

$$25r^2 + 5r = 0. (2.5)$$

Thus, r = 0 or -1/5 which gives x = 6 or 5.

3 Cubic equations

1.

$$x^3 + 4x - 5 = 0. \tag{3.1}$$

x must be odd.

<i>x</i> *	1	3	5	7	9
$(x^{3})^{*}$	1	7	5	3	9
$(4x)^*$	4	2	0	8	6
(-5)*	-5	-5	-5	-5	-5
$(f(x))^*$	0	4	0	6	0

Table 3: Structure for Equation (3.1)

Thus $x^* = 1$, 5 or 9, but 5 and 9 are too large, so $x^* = 1$, and

$$x = 5r_1 + 1. (3.2)$$

Substituting into (3.1) yields $r_1 = 0$ or

$$25r_1^2 + 15r_1 + 7 = 0. (3.3)$$

Then using $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, we get

$$r_1 = \frac{-3 \pm \sqrt{19}i}{10} \tag{3.4}$$

so that

$$x = 1, \frac{-1 \pm \sqrt{19i}}{2}$$

2.

$$x^3 + 5x^2 + 3x - 9 = 0. ag{3.5}$$

<i>x</i> *	1	3	5	7	9
$(5x^2)^*$	5	5	5	5	5
$(3x)^{*}$	±3	±9	±5	±1	±7
$(x^{3})^{*}$	±1	±7	±5	±3	±9
(- <i>q</i>)*	-9	-9	-9	-9	-9
$(f(x))^*$	0	2	6	0	2

Table 4: Structure for Equation (3.5)

From Table 4, $x^* = 1$ or 7, but 7 is too large so

$$x = 5r_1 + 1. (3.6)$$

Substituting into (3.5) gives $r_1 = 0$ and

$$25r_1^2 + 40r_1 + 16 = 0. (3.7)$$

Thus $r_1 = 0$ or -4/5, and so x = 1 or -3. When x is negative, $x^* = -3$, and so x = 1, -3, -3. For other non-conventional number theoretic approaches to cubic equations see [2, 4, 5, 6].

4 Simultaneous equations

4.1 Two variables

1.
$$3x + 7y = 27$$
 (4.1)

$$5x + 2y = 16$$
 (4.2)

x must be even from (4.2), so from (4.1) y must be odd. Since $(5x)^* = 0$ and y is odd, only $y^* = 3$ or $(2y)^* = 6$. Thus y = 3, 13, 23, ... but only y = 3 fits, so that the solution is

$$x = 2, y = 3$$

$$x^2 + 4y^2 + 80 = 15x + 30y \tag{4.3}$$

$$xy = 6 \tag{4.4}$$

From (4.4) x = 6/y which, when substituted into (4.3), gives

$$4y^4 - 30y^3 + 80y^2 - 90y + 36 = 0 \tag{4.5}$$

The RED right hand side is zero, so $(4y^4 + 36)^* = 0$. Hence, $y^* = 1, 2$ or 3 and y = 1, 2, 3 which fits (4.5) and so yields x = 6, 3, 2. But Equation (4.3) should have 4 roots, so we substitute (4.4) into (4.3) to get

$$x^{4} - 15x^{3} + 80x^{2} - 180x + 144 = 0.$$
(4.6)

Thus,

$$(x^4 - 15x^3 + 144)^* = 0. (4.7)$$

Apart from x = 6, 3 or 2, $x^* = 4$ yields $(6 - 0 + 4)^* = 0$, so that x = 4 and y = 3/2. Hence,

$$\{(x, y)\} = \{(6,1), (3,2), (2,3), (4,3/2)\}.$$

3.

$$3x^2 - 5y^2 = 28 \tag{4.8}$$

$$3xy - 4y^2 = 8 (4.9)$$

From (4.8) we see that x and y must have the same parity, and then from (4.9) that they must both be even. Thus $(x^2)^* = 6$ only, but $(y^2)^* = 0$, 4 or 6. Hence $x = \pm 4$ or ± 6 , but $y = 0, \pm 2$, $\pm 8, \pm 4$ or ± 6 . Since $y < x, y^* \neq 6$ or 8 and $y \neq 0$. Therefore,

$$x = \pm 4, \pm 6 \text{ and } y = \pm 2, \pm 4.$$

4.2 Three variables

1.

$$x + 2y + 2z = 11 \tag{4.10}$$

$$2x + y + z = 7 \tag{4.11}$$

$$3x + 4y + z = 14 \tag{4.12}$$

From (4.10) x is odd; from (4.12) z is odd, and so from (4.11) y is even. If we then subtract (4.11) from (4.12) we get

$$x + 3y = 7. (4.13)$$

The x^* , y^* values which satisfy (4.13) are shown in Table 5.

z in	<i>x</i> *	7	1	5	9	3
Equation	y*	0	2	4	6	8
(4.10)		2	3			
(4.11)		_	3			
(4.12)	_		3			

Table 5. x^* , y^* values for (4.13)

Thus,

$$x = 1, y = 2, z = 3$$

Note that if x = 5r + a and y = 5r + b, then a = 1 and b = 2, so that the solution classes are $x \in \overline{1}_5, y \in \overline{2}_5, z \in \overline{3}_5$.

2.

3.

$$x + 4y + 3z = 17 \tag{4.14}$$

$$3x + 3y + z = 16 \tag{4.15}$$

$$2x + 2y + z = 11 \tag{4.16}$$

From (4.16) z is odd, so from (4.14) x is even, and from (4.15) y is odd. If we then subtract (4.16) from twice (4.14) we get

$$6y + 5z = 23 \tag{4.17}$$

Thus $y^* = 3$ and y = 3 fits so solution set is

x = 2, y = 3, z = 1. (4.18)

$$2x + 3y + 4z = 20 \tag{4.18}$$

$$3x + 4y + 5z = 26 \tag{4.19}$$

$$3x + 5y + 6z = 31 \tag{4.20}$$

We subtract (4.19) from (4.20) to get

$$y + z = 5 \tag{4.21}$$

From (4.18), y is even, so from (4.21) z is odd and from (4.20) x is odd. Table 6 shows the values for y^* , z^* which are compatible with (4.21).

y*	0	2	4	6	8
z*	5	3	1	9	7

Table 6: y^* , z^* values for (4.21)

Hence, $y \neq 6$, 8 (too large) and $y \neq 0$, 4 from Equations (4.18) and (4.20). Thus the solution set is

$$x = 1, y = 2, z = 3.$$

5 Complex roots

1.

$$x^4 + x^3 - 6x^2 - 15x - 9 = 0. (5.1)$$

Let x = 5r + a. Then, if the constant in (5.1) is to be cancelled when this value of x is substituted, a = 3, which yields r = 0 and x = 3. Equation (5.1) now reduces to

$$x^3 + 4x^2 + 6x + 3 = 0. (5.2)$$

Again let x = 5r + a and substitute into (5.2). Elimination of the constant occurs when a = -1, and since r = 0 is a root then x = -1. Equation (5.2) then reduces to

$$x^2 + 3x + 3 = 0. (5.3)$$

We then use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ again to get the complex roots, with the complete solution set

$$x = -1, 3, \frac{-3 \pm \sqrt{3}i}{2}$$

Note that $5r - 1 = (5(s - 1) + 4) \in \overline{4}_5$.

2.
$$x^4 - 3x^3 + 12x - 16 = 0.$$
 (5.4)

Let x = 5r + a. Elimination of the constant yields $a = \pm 2$ which, when substituted into (5.4) both reduce the latter to

$$x^3 - x^2 - 2x + 8 = 0. (5.5)$$

and r = 0 is one solution so that $x = \pm 2$. If x = 5r - 2 (to eliminate 8), then (5.5) becomes

$$25r^2 - 35r + 14 = 0. (5.6)$$

so that

$$r = \frac{7 \pm \sqrt{7i}}{10},$$
 (5.7)

or $x = 5r - 2 = \frac{3 \pm \sqrt{7}i}{2}$. The solution set is then $\{\pm 2, \frac{3 \pm \sqrt{7}i}{2}\}$.

$$x^3 + 1 = 0. (5.8)$$

With x = 5r - 1 the constant is eliminated. Substitution into (5.8) yields r = 0 and $25r^2 - 15r + 3 = 0.$ (5.9)

or

3.

$$r = \frac{3 \pm \sqrt{3}i}{10},$$
 (5.10)

so that the solution set is $\{-1, (3 \pm \sqrt{3}i)/2\}$. (Note that $5r - 2 = (5(s - 1) + 3) \in \overline{3}_5$ in row (s - 1).)

6 Final comments

Students should find the approach outlined here in the examples an interesting alternative to what can sometimes degenerate into a 'symbol-shoving' exercise. There is also potential for project work which extends this type of analysis to other types of equations and using other modular rings [6].

References

- [1] Hall, H. S., S. R. Knight. 1952. Elementary Algebra. London: Macmillan.
- [2] Horadam, A. F., A. G. Shannon. 1988. Asveld's polynomials. In A. N. Philippou, A. F. Horadam, G. E. Bergum (eds), *Applications of Fibonacci Numbers*. Dordrecht: Kluwer, 163–176.
- [3] Lee, T. 1994. Advanced Mathematics. 3rd edition. Fairfield, NSW: T.Lee.
- [4] Leyendekkers, J. V., A. G. Shannon. 1999. The Cardano Family of Cubics. Notes on Number Theory and Discrete Mathematics, Vol. 5, 1999, No. 4, 151–162.
- [5] Leyendekkers, J. V., A. G. Shannon. 2000. Analysis of the Roots of Some Cardano Cubes, *Notes on Number Theory and Discrete Mathematics*, Vol. 6, 2000, No. 4, 113– 117.
- [6] Leyendekkers, J. V., A. G. Shannon, J. M. Rybak. 2007. Pattern Recognition: Modular Rings and Integer Structure. North Sydney: Raffles KvB Monograph No 9.