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1 Introduction 

The purpose of this paper is to consider some properties of series defined formally as 
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in which the an are arbitrary integers and the zn are Fermatian numbers [30]. We shall call such 
series a generalized Hurwitz series (GH–series). When z = 1, we get the ordinary Hurwitz 
series [7]. This will involve references to Ward’s generalized Staudt–Clausen problem [38] and 
related work by Carlitz [5, 16].   

If we consider another GH–series 
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then the product of (1.1) and (1.2) is another GH-series [26]: 
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in which  
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as defined in (2.10 to (2.4) below. 
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2 Fermatian numbers 

Fermatian numbers may be defined in terms of real numbers z such that 
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(2.1) 

so that 

 nn =1  (2.2) 
 

and 

 ,!!1 nn =  (2.3)  
where 

 11...! zzzz nnn −=  (2.4) 

Some properties of these numbers may be found in [35].  
Carlitz and Moser [21] examined some of the Fermatian properties by giving all the 

possible factorizations of xn into its product of C-polynomials over the field of rational 
numbers, where the C–polynomial of A is defined by 

kaaa xxxxA +++= ...)( 21  
for 

},...,,{ 21 kaaaA =  

an ordered set of non-negative integers. A particularly interesting result of Carlitz and Moser is 
that if f(n) denotes the number of factorizations 
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where A(x), B(x) are C–polynomials, then 
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In another paper [19], Carlitz proved that for the quotient 
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the highest power, P, of the prime p that divides Qn  is given by 
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Carlitz has also used zn in the development of q–Bernoulli numbers and polynomials [6].  
He used the notation 
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but as [x] used to be used commonly for the greatest integer function and as Carlitz himself [4] 
used [k] to mean 

xxk
nkp −=][ , 

it is felt that zn is less confusing. Moreover, zn has some other notational advantages [27].  If 
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then Tn is the sum of the rising diagonals of the multinomial triangle generated by n
rz  

[22, 24, 25].  Hoggatt and Bicknell [2] proved that, for the general r-nomial triangle induced by 

the expansion n
rz  (n = 0, 1, 2, 3, ...), by letting the r-nomial triangle be left-justified and by 

taking sums from the left edge and jumping up p and over 1 entry until out of the triangle that  
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and the r-nomial coefficient 
rj
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⎧ is the entry in the n-th row and j-th column of the generalized 

Pascal triangle [1]. Thus, 
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which, when p = 1, is a generating function for {Tn} with suitable initial values.  Here, 
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so that the notation is quite versatile. 

3 Fontené–Jackson type derivatives 

Morgan Ward [38] once posed the problem whether a suitable definition for the generalized 
Bernoulli numbers could be framed so that a generalized Staudt–Clausen theorem existed 
within the framework of the Fontené–Jackson calculus (Equation (4.1)). Elsewhere [28], we 
have shown that it is possible. Here, we focus on two related and relevant differential operators 
within this calculus in the style of the work of Carlitz with Chak and Shur derivatives [6, 10].  
They are defined [34] for notational convenience by 
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Some fundamental properties of Dxz follow if we define Dzx = 0 and 
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in which a is a constant, and for f(y), a function of y, 
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which, when z = 1, reduces to 
.)()( yDyfDyfD xyx =  

Similarly, we can define formally a difference operator, Ixz, such that 

 IxzDxz = f(x) (3.3) 
and 
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We have, for n ≠ –1, 
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where C is a constant determined by the initial conditions, and for n = –1, we have 

Ix zx– 1 = Lz(x) + C  
in which Lz(x) is defined by 

∑
∞

= +

+
−=+

0 1

1
)1()1(

r r
r

r
r

z zz
xxL  

to accompany Ez(x):  
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so that 
Dx zLz(x) = (Ez(y))–1  

and 
x  = Lz(E(x)).  
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4 Staudt–Clausen Theorem 

Carlitz [13, 14, 16] outlined partial solutions to Ward’s question (Section 2). A complete sol-
ution may be found in [29]. The (von) Staudt–Clausen theorem states that 
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in which B2n is a Bernoulli number, An is an integer, and the pk are primes such that (pk – 1) 
divides 2n. 

We can define generalized Bernoulli numbers in the context of the previous two sections by 
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so that Bn1 = Bn. The Bnz are thus generalizations of the ordinary Bernoulli numbers, Bn, for 
which the Staudt–Clausen theorem can be restated as 
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where p is an odd prime (and hence n is even). 
 Another generalization of the Staudt–Clausen theorem relevant to our later work is that 
of Vandiver [37].  He defined generalized Bernoulli numbers of the first order, bn(m,k), by the 
umbral equality 
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Vandiver’s Staudt–Clausen theorem is that for n even, 
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where the p’s are distinct primes relative to m (non-zero) and such that ),1(mod0 −≡ ipn  and 
An is an integer. The generalization of (4.1) is obvious. 

5 Generalized Hurwitz series 

The Fontené–Jackson type derivatives and integrals of GH–series are also GH–series, since 
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For a series without constant term 
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that 
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because by the statement 
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is meant that the system of congruences 
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is satisfied.  This is equivalent to the assertion that 
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where H(t) is some generalized  Hurwitz series. 

6 Concluding comments 

There are possible analogous extensions and generalizations of this work, for example, to 
q–numbers or Gaussian integers such as in Kim [31]. Other possible future research would be 
to find an analogy to Wilson’s theorem with the Fermatian numbers and to find a more 
comprehensive combinatorial description of them. For instance, Riordan [33] has shown that 

)(1 11 qaq nn +=
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in which anm(q) is the enumerator of partitions with m parts, none greater then n, such that 
their Ferrer’s graphs include an initial triangle of sides n and m (the graph of partition 
m, m – 1, ..., 2, 1). 
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