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1 Introduction

The figurate or n-gonal numbers (everywhere the natural number n satisfies the inequality n ≥
3) are objects of active research. Here we shall discuss a possible modification of them using
examples of modifications of triangular and quadratic numbers, and will study some of their
properties.

Each n-gonal number has a countour. Let us call it hollow n-gonal number. For example, the
fourth triangular number is shown on Fig. 1, while on Fig. 2 its countoure is given, i.e., this is
the fourth hollow triangle number.
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Fig. 1 Fig. 2

Let hk
s be the k-th hollow s-anglular number. Its geometrical interpretation is a figure con-

structed by circles in the form of right s-gonal figure. It can be easily seen and proved, e.g., by
induction, that hk

s = s(k − 1).
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Below, we will show that each s-gonal number can be represented as a composition of hollow
s-gonal numbers.

First, we note that k-th s-gonal number has the form (e.g., [1, 2])

pks = k +
k(k − 1)

2
(s− 2).

In the particular case when s = 3, we obtain the triangular numbers that have the form

tk = pk3 = k +
k(k − 1)

2
=

k(k + 1)

2
.

It can be easy seen that:

t1 = h1
3 t6 = h6

3 + h3
3

t2 = h2
3 t7 = h7

3 + h4
3 + h1

3

t3 = h3
3 t8 = h8

3 + h5
3 + h2

3

t4 = h4
3 + h1

3 t9 = h9
3 + h6

3 + h3
3

t5 = h5
3 + h2

3 t10 = h10
3 + h7

3 + h4
3 + h1

3

etc. More generally, the following assertion is valid.
Theorem 1. Let k ≥ 3 be a natural number. Then

tk =

[ k−1
3

]∑
i=0

hk−3i
3 .

The recurrent form of the above assertion is given in the following:
Theorem 2. Let k ≥ 4 be a natural number. Then tk = tk−3 + hk

3.

When s = 4 we obtain the quadratic numbers that have the form

qk = pk4 = k + 2
k(k − 1)

2
= k2.

Now, we can prove:
Theorem 3. Let k ≥ 3 be a natural number. Then

qk =

[ k−1
2

]∑
i=0

hk−2i
4 .

Theorem 4. Let k ≥ 4 be a natural number. Then qk = qk−2 + hk
4.

In a next paper, formulas for n-gonal numbers will be discussed.
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