Remark on the hollow triangular and quadratic numbers

Krassimir Atanassov

Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mail: krat@bas.bg

Abstract: A new concept related to the *n*-gonal numbers is introduced and it is illustrated with the cases of triangular and quadratic numbers.

Keywords: Figurate number, *n*-gonal number, Quadratic number, Triangular number. **AMS Classification:** 11A67.

1 Introduction

The figurate or *n*-gonal numbers (everywhere the natural number *n* satisfies the inequality $n \ge 3$) are objects of active research. Here we shall discuss a possible modification of them using examples of modifications of triangular and quadratic numbers, and will study some of their properties.

Each *n*-gonal number has a countour. Let us call it *hollow n-gonal number*. For example, the fourth triangular number is shown on Fig. 1, while on Fig. 2 its countoure is given, i.e., this is the fourth hollow triangle number.

Let h_s^k be the k-th hollow s-anglular number. Its geometrical interpretation is a figure constructed by circles in the form of right s-gonal figure. It can be easily seen and proved, e.g., by induction, that $h_s^k = s(k-1)$. Below, we will show that each *s*-gonal number can be represented as a composition of hollow *s*-gonal numbers.

First, we note that k-th s-gonal number has the form (e.g., [1, 2])

$$p_s^k = k + \frac{k(k-1)}{2}(s-2)$$

In the particular case when s = 3, we obtain the triangular numbers that have the form

$$t_k = p_3^k = k + \frac{k(k-1)}{2} = \frac{k(k+1)}{2}.$$

It can be easy seen that:

$$\begin{array}{ll} t_1 = h_3^1 & t_6 = h_3^6 + h_3^3 \\ t_2 = h_3^2 & t_7 = h_3^7 + h_3^4 + h_3^1 \\ t_3 = h_3^3 & t_8 = h_3^8 + h_3^5 + h_3^2 \\ t_4 = h_3^4 + h_3^1 & t_9 = h_3^9 + h_3^6 + h_3^3 \\ t_5 = h_3^5 + h_3^2 & t_{10} = h_3^{10} + h_3^7 + h_3^4 + h_3^1 \end{array}$$

etc. More generally, the following assertion is valid.

Theorem 1. Let $k \ge 3$ be a natural number. Then

$$t_k = \sum_{i=0}^{\left[\frac{k-1}{3}\right]} h_3^{k-3i}$$

The recurrent form of the above assertion is given in the following:

Theorem 2. Let $k \ge 4$ be a natural number. Then $t_k = t_{k-3} + h_3^k$.

When s = 4 we obtain the quadratic numbers that have the form

$$q_k = p_4^k = k + 2\frac{k(k-1)}{2} = k^2.$$

Now, we can prove:

Theorem 3. Let $k \ge 3$ be a natural number. Then

$$q_k = \sum_{i=0}^{\left[\frac{k-1}{2}\right]} h_4^{k-2i}.$$

Theorem 4. Let $k \ge 4$ be a natural number. Then $q_k = q_{k-2} + h_4^k$.

In a next paper, formulas for n-gonal numbers will be discussed.

References

- Polygonal Number, Wolfram MathWorld, http://mathworld.wolfram.com/ PolygonalNumber.html (accessed 17 Dec. 2012).
- [2] Polygonal number, Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/ wiki/Polygonal_number (accessed 17 Dec. 2012).