A comment on a result of Virgolici

Mickey Polasub

9/34 Ramintra 40 Rd. Nuanchan, Beungkum, Bangkok, Thailand 10230 e-mail: mickey.polasub@gmail.com

Abstract: We provide a short proof of a generalization of a recent result of Virgolici on the diophantine equation $2^x + 1009^y = p^z$.

Keywords: Exponential diophantine equations, Primitive divisors.

AMS Classification: Primary 11D61.

1 Introduction

In a recent paper, Virgolici [3] solved the exponential equation

$$2^x + 1009^y = p^z \tag{1}$$

for odd primes p < 1000, showing that there are no solutions with y > 0 (and only solutions with y = 0 for the Fermat primes p = 3, 5, 17 and 257).

2 Main result

In this note, we show more generally the following.

Theorem 1 If there exists a solution to equation (1) in integers x, y and z and prime p, then either (x, y, z, p) = (3, 0, 2, 3) or z = 1.

To prove this, we will assume that we have a solution to (1) with, via Mihailescu's Theorem, y > 0. If z is even, then necessarily p = 3, as treated in [3]. Otherwise, we may suppose that z is odd and that, modulo 9, x is even. if 3 | z, applying Magma's SIntegralPoints routine (here $S = \{1009\}$) to the elliptic curves $Y^2 = X^3 - 1009^{\alpha}$ for $0 \le \alpha \le 5$, we find no new solutions. If 5 | z, equation (1) is insoluble modulo

$$11 \cdot 31 \cdot 41 \cdot 61 \cdot 251 \cdot 331 \cdot 401 \cdot 601.$$

We may thus assume that z is divisible by a prime $q \ge 7$. Equation (1) is now a special case of the equation $a^2 + 1009^y = b^q$, where b is odd and $q \ge 7$ is prime. Appealing to the Primitive Divisor Theorem of Bilu et al [1] in a now-standard way (as in, for example, [2]) and using the fact that $\mathbb{Q}(\sqrt{-1009})$ has class number 20, we conclude that there are no solutions to $a^2 + 1009^y = b^q$ with $q \ge 7$. This completes the proof of Theorem 1.

Note that there are many solutions to (1) with z = 1, likely infinitely many. These are of course just primes of the shape $2^x + 1009^y$. There are precisely 20 such primes up to 10^{20} .

It is not too hard to generalize Theorem 1 by replacing p with an arbitrary integer. This adds the additional solution corresponding to the identity $2^9 + 1009 = 39^2$. Our arguments also work with minor modification if one replaces the prime 1009 with any prime congruent to one of 1, 13 or 19 modulo 24.

References

- [1] Bilu, Y., G. Hanrot, P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, *J. Reine Angew. Math.*, Vol. 539, 2001, 75–122.
- [2] Pink, I., Z. Rabai, On the diophantine equation $x^2 + 5^k 17^l = y^n$, *Communications in Math.*, Vol. 19, 2011, 1–9.
- [3] Virgolici, H. On the exponential diophantine equation $2^x + 1009^y = p^z$, Analele Univ. Spiru Haret – Seria Mat.-Inf., Vol. 7, 2011, 1–9.