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1 Introduction

An intriguing mathematical fact is that for every natural n,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

Thus the set {1, 2, . . . , n} has the property that the sum of the cubes of its elements is equal
to the square of the sum of its elements. It is natural to enquire about other sets {a1, a2, . . . , an}
where this phenomenon occurs

a31 + a32 + · · ·+ a3n = (a1 + a2 + · · ·+ an)
2.

The purpose of this paper is to present a number of new results and to encourage the reader to
continue the investigation of this beautiful Diophantine equation.

We will call such a set a CS-set, and denote it by angular brackets 〈a1, a2, . . . , an〉. Repeated
elements are allowed but to avoid trivialities we will exclude sets that contain 0 or contain both k
and −k for some integer k. When all entries are positive, we refer to a positive CS-set; a CSn-set
will denote a CS-set with n elements.
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2 Positive CS-sets

The following is an extraordinary generalization attributed to the French mathematician Liouville
[2, 5].

Proposition 1. For each natural n, denote by τ(n) the number of positive divisors of n. Then
〈τ(d) : d|n, d ≥ 1〉 is a CS-set, where τ is taken over the positive divisors of n.

Proof. The proposition is clearly true for prime powers since for each prime p and each natural
n, the corresponding set of pn−1 is

〈τ(p0), τ(p1), . . . , τ(pn−1)〉 = 〈1, 2, . . . , n〉.

τ is well-known to be a multiplicative function [7], meaning that if a, b are relatively prime inte-
gers then τ(ab) = τ(a)τ(b). By elementary multiplicative number theory, the functions

f(n) =
∑
d|n

τ(d) and F (n) =
∑
d|n

[τ(d)]3

must also be multiplicative. All we need now is that F (n) = [f(n)]2. Since this is already true for
prime powers, the rest follows from the prime factorization of n and the multiplicative property
of f and F . �

Proposition 2. For each natural n, there are finitely many positive CSn-sets.

Proof. Suppose that ak are the elements of a CSn-set such that m is the largest entry. Then

m3 ≤
n∑

k=1

a3k =

(
n∑

k=1

ak

)2

≤ (nm)2 = n2m2,

so that m ≤ n2. Thus the entries in a positive CSn-set cannot exceed n2, leaving finitely many
n-tuples. �

There is a striking general property of positive CSn-sets.

Proposition 3. For every natural n, there is precisely one positive CSn-set with distinct elements.

Proof. We prove by induction that:

For integers ak, if 1 ≤ a1 < a2 < · · · < an then

a31 + a32 + · · ·+ a3n ≥ (a1 + a2 + · · ·+ an)
2,

with equality if and only if ak = k for 1 ≤ k ≤ n.
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This is clear for n = 1. Assume that the proposition holds for some natural n; we will prove
it for n+ 1. Note that ak ≥ k and that an+1 − k ≥ an+1−k for all values of k. We begin with the
fact that

(an+1 − n)(an+1 − n− 1) ≥ 0

with equality if and only if an+1 = n+ 1. Then expanding gives

a2n+1 − an+1 ≥ 2nan+1 − n(n+ 1) = 2

[
nan+1 −

n(n+ 1)

2

]
= 2

n∑
k=1

(an+1 − k) ≥ 2
n∑

k=1

an+1−k = 2
n∑

k=1

ak

with equality if and only if ak = k for all k. By the induction hypothesis, we have that

n+1∑
k=1

a3k = a3n+1 +
n∑

k=1

a3k ≥ a2n+1 + 2an+1

n∑
k=1

ak +

(
n∑

k=1

ak

)2

=

(
an+1 +

n∑
k=1

ak

)2

=

(
n+1∑
k=1

ak

)2

as desired. �

If we do not require all the members of the set to be distinct, we see, by iterating through
all possible n-tuples with entries within the upper bound from Proposition 2, that CS-sets occur
surprisingly often.

n = 2 : 〈1, 2〉, 〈2, 2〉
n = 3 : 〈1, 2, 3〉, 〈3, 3, 3〉
n = 4 : 〈1, 2, 2, 4〉, 〈1, 2, 3, 4〉, 〈2, 2, 4, 4〉, 〈4, 4, 4, 4〉
n = 5 : 〈1, 2, 2, 3, 5〉, 〈1, 2, 3, 4, 5〉, 〈3, 3, 3, 3, 6〉, 〈3, 3, 3, 4, 6〉, 〈5, 5, 5, 5, 5〉.

At this point, the number of possibilities increases markedly. For n equal to 6, 7 and 8 entries
there are, respectively, 18, 30 and 94 positive CSn-sets.

Mason [6] has indicated why CSn-sets are so frequent, by showing how they can be derived
from arbitrary sets of n natural numbers. For two sets 〈ai〉 and 〈bj〉 of integers, he defines their
bag product as the set 〈aibj〉 of all products with one element from each set. The bag product
of two CS-sets is also a CS-set. Mason constructs positive CS-sets from the bag product of an
arbitrary set and a suitable constant set.

By taking bag products of sets of the form 〈1, 2, . . . , n〉, we can obtain Liouville’s Tau gener-
alization. More precisely, it can be seen from the proof of Proposition 1 that the Liouville set of
m is the bag product of the CS-sets corresponding to the largest power of each prime dividing m.

When m = 24 = 23 · 3, for example, this yields the set

〈τ(1), τ(2), τ(3), τ(4), τ(6), τ(8), τ(12), τ(24)〉 = 〈1, 2, 2, 3, 4, 4, 6, 8〉,
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which is the bag product of 〈1, 2, 3, 4〉 (corresponding to 23) and 〈1, 2〉 (corresponding to 3).
A full characterization of all positive CS-sets or all CS-sets in general may be out of reach,

but we can improve the search efficiency. For example, we showed that the upper bound of an
element of a positive CSn-set is n2, but numerical evidence indicates that a much better bound
can be established. Good bounds on the number of positive CSn-sets for each n seems plausible
as well.

3 Extending CS-sets

Numerical evidence shows that there are many examples of CS-sets that can be extended by a
single entry to give another CS-set. We examine when this occurs.

Proposition 4. A CS-set can be extended by an element if and only if its sum a is equal to
z(z − 1)/2 for some integer z. Moreover the appended integer is z. If −z is a member of the
CS-set, then we can replace the appending action with deleting −z.

Proof. Suppose that we have a CS-set for which the sum of the entries is a; then the sum of the
cubes of the entries is a2. Suppose that appending an integer z to the set results in another CS-set
such that the new sum is b and the new cube sum is b2. Then{

a+ z = b

a2 + z3 = b2
=⇒

{
b− a = z

b+ a = z2
=⇒

{
a = z(z − 1)/2

b = z(z + 1)/2
.

Note that the appended integer is b − a = z. Conversely, it is straightforward to show that if
the sum of a CS-set is z(z − 1)/2 for some integer z then appending z yields another CS-set. �

For example, extending 〈1〉 yields in turn all of the sets of the form 〈1, 2, . . . , n〉. However,
there are other possibilities, the smallest of the positive CS-sets being 〈1, 1, 4, 5, 5, 5〉 to which
the numbers {7, 8, 9, . . .} can be appended in turn. There are many others but it is unknown for
each n how many CSn-sets exist with sum equal to z(z − 1)/2 for some integer z.

Observe that for a 6= 0 the quadratic equation a = z(z − 1)/2 =⇒ z2 − z − 2a = 0 in z has
both a positive and a negative root. Thus we can alter the set by appending a negative integer z
instead. For example, beginning with 〈6, 6, 6, 6, 6, 6〉 gives

〈−8, 6, 6, 6, 6, 6, 6〉 −→ 〈−8,−7, 6, 6, 6, 6, 6, 6〉 −→ 〈−8,−7, 6, 6, 6, 6, 6〉.

Overall a way of finding CS-sets is to start with any CS-set whose sum is a triangular number.
Then we can follow the appending process of obtain a chain of CS-sets.

We can carry out a similar procedure to characterize when two numbers x and y can be ap-
pended to a suitable CS-set to produce another CS-set. If we take y to be the negative of one of
the numbers in the set, then we can simply replace the −y in the set with x.
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Proposition 5. A CS-set with sum a can be extended by two entries to produce another CS-set if
and only if 2(2a+ 1) = u2 + v2 + (u+ v)2 for some integers u, v.

Proof. Suppose that we have a CS-set with sum a and cube sum a2, and that appending some pair
of integers x and y makes the sum b and cube sum b2. Then{

b− a = x+ y

b2 − a2 = x3 + y3
=⇒ b+ a = x2 − xy + y2.

It follows that{
2a = (x2 − xy + y2)− (x+ y) =⇒ 2(2a+ 1) = (y − x)2 + (x− 1)2 + (y − 1)2

2b = (x2 − xy + y2) + (x+ y) =⇒ 2(2b+ 1) = (y − x)2 + (x+ 1)2 + (y + 1)2
.

Conversely, suppose the sum of a CS-set is a and 2(2a + 1) = u2 + v2 + (u + v)2 for some
integers u, v. Let{

x = u+ 1

y = u+ v + 1
=⇒

{
u = x− 1

v = y − x
=⇒ 2a = (x2 − xy + y2)− (x+ y)

=⇒ 2(a+ x+ y) = (x2 − xy + y2) + (x+ y).

Then we have that

4(a2 + x3 + y3) = [(x2 − xy + y2)− (x+ y)]2 + 4(x3 + y3)

= [(x2 − xy + y2) + (x+ y)]2

= [2(a+ x+ y)]2

= 4(a+ x+ y)2.

Thus a2 + x3 + y3 = (a+ x+ y)2. The process can be continued indefinitely since

2(2(a+ x+ y) + 1) = (y − x)2 + (x+ 1)2 + (y + 1)2.

�

For example, consider the set 〈3, 3, 3, 3, 4, 6, 8〉 whose sum a is 30 and whose cube sum is
302. Since 2(2a+1) = 122 = 42 + (−9)2 + (−5)2, we can let (x, y) = (5,−4) and so obtain the
set 〈3, 3, 3, 3, 5, 6, 8〉.

4 Zero sums

There is significant motivation to explore CS-sets with zero sum. We note that a constant integer
multiple of the elements of a zero-sum CS-set is a zero-sum CS-set, as is the union of zero-sum
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CS-sets, and the union of a CS-set with any CS-set. Recall that the bag product of two CS-sets is
also a CS-set, but the bag product of a zero-sum CS-set with any set is a CS-set.

Theorem 1. For n = 1, 2, 3, 4, there are no zero-sum CSn-sets.

Proof. If n = 1, we get the CS-set consisting of just 0, which is excluded.
The n = 2 case gives

a31 + a32 = 0 = (a1 + a2)
2 =⇒ a1 = −a2,

which is excluded.

Note that for n ≥ 3, if 〈a1, a2, . . . , an〉 is a CS-set such that

a31 + a32 + · · ·+ a3n = 0 = (a1 + a2 + · · ·+ an)
2

then we have that
a31 + a32 + · · ·+ a3n−1 = (a1 + a2 + · · ·+ an−1)

3,

which is an interesting Diophantine equation in its own right and deserves attention. Its resolution
would fully solve the zero-sum problem.

For n = 3, this is

a31 + a32 = (a1 + a2)
3 =⇒ a1a2(a1 + a2) = 0,

The equation holds when a1 = 0 or a2 = 0 or a1 = −a2, all of which are excluded.
For n = 4, this is

a31+a
3
2+a

3
3 = (a1+a2+a3)

3 =⇒ 0 = (a1+a2+a3)
3−(a31+a32+a33) = 3(a1+a2)(a2+a3)(a3+a1).

The solutions are a1 = −a2 or a2 = −a3 or a3 = −a1, all of which are excluded. �

A special family for n = 5 can be found as follows.

Theorem 2. There are infinitely many CS5-sets with zero sum such that the entries share no
positive factor greater than 1.

Proof. Inspired by the zero-sum CS-set 〈−8,−7, 1, 5, 9〉, we try to obtain zero-sum CS5-sets of
the form

〈−x,−y, r − s, r, r + s〉.

We require that

x+ y = 3r and x3 + y3 = (r − s)3 + r3 + (r + s)3 = 3r(r2 + 2s2).
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Subsequently,

(3r)3 = (x+ y)3

= x3 + y3 + 3xy(x+ y)

= 3r(r2 + 2s2) + 3xy(3r)

=⇒ 9r2 = r2 + 2s2 + 3xy

=⇒ (3x) · (3y) = 24r2 − 6s2.

We know that 3x+ 3y = 9r, so 3x and 3y are the roots of the quadratic equation

z2 − 9rz + (24r2 − 6s2) = 0 =⇒ z

3
=

9r ±
√

3(8s2 − 5r2)

6
.

Suppose that 8s2−5r2 = 3. Then r is odd and so z
3
= 3r±1

2
yield integers x, y. Letting t = 4s,

we get t2 − 10r2 = 6.

A solution of this Pellian equation is (t, s) = (4, 1). Since the fundamental solution of α2 −
10β2 = 1 is (α, β) = (19, 6), a set of solutions of t2 − 10r2 = 6 is given by

tk + rk
√
10 = (4 +

√
10)(19 + 6

√
10)k

where k is any positive integer. For all of these solutions, t is a multiple of 4 so that s is indeed
an integer.

Generally, we get the CS5-sets〈
−3r + 1

2
,−3r − 1

2
, r − s, r, r + s

〉
where 8s2 − 5r2 = 3. Note that the first two entries are apart by 1 so the only positive common
divisor of all the entries is 1.

However, we can get other possibilities by taking the discriminant of the quadratic to be the
square of any multiple of 3. There are surely many CS5-sets that do not include an arithmetic
progression. �

It turns out that larger CS-sets with zero sum occur abundantly. This fact can be related to the
Tarry-Escott problem [2]. This old problem asks for pairs of integer sets with the same cardinality
and equal kth power sums for all k running from 1 to some natural m. We denote this property
for two such sets A,B by A m

= B.

Proposition 6. For n = 7, 8 and each n ≥ 10, there are infinitely many zero-sum CSn-sets.

Proof. Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. Frolov [4] states that for every
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integer c,

{a1, a2, . . . , an}
m
= {b1, b2, . . . , bn}

=⇒ {c+ a1, c+ a2, . . . , c+ an}
m
= {c+ b1, c+ b2, . . . , c+ bn}.

This is easily verified upon expansion by the binomial theorem. We will concentrate on
m = 3. Suppose for integers ak and bk that

∑n
k=1 a

2
k =

∑n
k=1 b

2
k. We will call a pair of sets of

equal cardinality and equal sum of squares a square pair, or an SP. Like CSn-sets, we will say
SPn to refer to a square pair of sets of cardinality n. It can be seen that

{−ak : 1 ≤ k ≤ n} ∪ {ak : 1 ≤ k ≤ n} 3
= {−bk : 1 ≤ k ≤ n} ∪ {bk : 1 ≤ k ≤ n},

since the sum and cube sum are both 0. Then we have for any integer c that

{c− ak : 1 ≤ k ≤ n} ∪ {c+ ak : 1 ≤ k ≤ n} 3
= {c− bk : 1 ≤ k ≤ n} ∪ {c+ bk : 1 ≤ k ≤ n},

so both the sum and cube sum of each set

〈{c−ak : 1 ≤ k ≤ n}∪{c+ak : 1 ≤ k ≤ n}∪{−c+bk : 1 ≤ k ≤ n}∪{−c−bk : 1 ≤ k ≤ n}〉

is 0, as desired.
Before expressing the full power of this technique, let us digress with an example. Begin with

any Pythagorean triple, say {3, 4, 5}. Since 32 + 42 = 02 + 52,

{−3,−4, 3, 4} 3
= {0,−5, 0, 5}

=⇒ {c− 3, c− 4, c+ 3, c+ 4} 3
= {c, c− 5, c, c+ 5}.

This gives rise to the family of CS-sets

〈c− 3, c− 4, c+ 3, c+ 4,−c,−c+ 5,−c,−c− 5〉.

Taking c = 6 yields

〈3, 2, 9, 10,−6,−1,−6,−11〉 = 〈−11,−6,−6,−1, 2, 3, 9, 10〉.

By setting c to the negative of an element, an entry can be strategically eliminated. For
example, setting c = 3 above yields

〈0,−1, 6, 7,−3, 2,−3,−8〉 = 〈−8,−3,−3,−1, 2, 6, 7〉.

It is well known that there are infinitely many Pythagorean triples [7], so we can use them in
this manner to get infinitely many CSn sets with zero-sum for n = 7, 8.

We can get infinitely many SPn for each n by extending the idea of Pythagorean triples to
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Pythagorean n-tuples. For n ≥ 4, define a Pythagorean n-tuple as an n-element list (x1, x2, . . . , xn)
for which

∑n−1
k=1 x

2
k = x2n. Since {x1, . . . , xn−1} and {xn, 0, . . . , 0} form an SP, we want infinitely

many Pythagorean n-tuples for each n ≥ 4.
It holds for all integers a, b that

(a2 − b)2 + (2a)2b = (a2 + b)2.

Suppose that n ≥ 4 and let a and {a1, a2, . . . , an−2} be arbitrarily chosen integers. Let b =∑n−2
k=1 a

2
k. Then

(a2 − b)2 +
n−2∑
k=1

(2aak)
2 = (a2 + b)2,

which means that
(a2 − b, 2aa1, . . . , 2aan−2, a2 + b)

is a Pythagorean n-tuple. We can arrange that all of the ak are distinct or that several of them are
equal.

Infinitely many Pythagorean (n + 1)-tuples leads to infinitely many CS(4n)-sets for n ≥ 3.
An entry can be strategically eliminated by setting the translation c to be the negative of a distinct
element, so infinitude also holds for 4n− 1 elements when n ≥ 3.

Since some of the initial ak can be chosen to be equal, two or three entries can be arranged
to be equal. Those two or three entries can be annihilated by choosing c to be their negative. So
there are also infinitely many zero-sum CS(4n−2)-sets for n ≥ 3, and CS(4n−3)-sets for n ≥ 4.
Thus we have shown that for n = 7, 8 and each n ≥ 10 there are infinitely many CSn-sets with
zero-sum. �

Here is how a Pythagorean 4-tuple can be used. Let r, s and c be arbitrary integers. Then

(s2 − 2r2, 2rs, 2rs, s2 + 2r2)

is a Pythagorean 4-tuple. As above, we can use it to construct an infinite family of CS-sets:

〈{c− s2 + 2r2, c− 2rs, c− 2rs} ∪ {c+ s2 − 2r2, c+ 2rs, c+ 2rs}
∪ {−c,−c,−c+ 2r2 + s2} ∪ {−c,−c,−c− 2r2 − s2}〉.

By our choice of c, we can obtain a CS-set of length 10, 11 or 12.
If we want more variety among the entries, we can combine two disjoint Pythagorean n-tuples

A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) to get an SPn with distinct elements:

n−1∑
k=1

a2k = a2n,
n−1∑
k=1

b2k = b2n =⇒ b2n +
n−1∑
k=1

a2k = a2n +
n−1∑
k=1

b2k.
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The cases that remain are n = 6, 9. There are solutions such as

〈−11,−5,−4, 2, 8, 10〉 and 〈−17,−10,−8,−1, 2, 3, 6, 7, 18〉,

but apart from taking constant multiples, we have not succeeded in describing non-trivial infinite
families.

5 Infinitude

Proposition 7. For n = 1, 2, there are finitely many CSn-sets.
Proof. The only CS1-set is 〈1〉, since a3 = a2 =⇒ a = 1.

In the n = 2 case, for a 6= b, we have

a3 + b3 = (a+ b)2

=⇒ a2 − ab+ b2 = a+ b

=⇒ a2 − (b+ 1)a+ (b2 − b) = 0.

The discriminant is
(b+ 1)2 − 4(b2 − b) = −3b2 + 6b+ 1,

which has finitely many positive values. Iterating through them, the only CS2-sets are 〈1, 2〉 and
〈2, 2〉. �

Suppose that we begin with any set of n integers {a1, a2, . . . , an}. Let

u = a31 + a32 + · · ·+ a3n,

v = a1 + a2 + · · ·+ an.

Can we get a CS-set from this by multiplying each entry by an integer t? It is straightforward
to check that t should be v2/2. Thus, we can construct a CS-set whenever v2 is a multiple of u.
This will always occur when u = 1, u = 2 and when u = v.

For example, any solution of the equation x3 + y3 + z3 = 1 will generate a CS3-set, and it
was shown by Ramanujan [2] that there are infinitely many such non-trivial triples.

We proceed with the u = v case for n = 3 using a method attributed to Chowla.

Proposition 8. For n = 3, 4, there are infinitely many CSn-sets with distinct elements.

Proof. From numerical examples, we notice that there seems to be many cases where

x3 + y3 + z3 = x+ y + z, x+ y = 3q, z = −2q
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for some integer q. Suppose that this is true for some integers x, y, z. Then

q = x+ y + z

= x3 + y3 + z3

= (x+ y)[(x+ y)2 − 3xy] + z3

= 3q[(3q)2 − 3xy] + (−2q)3

= 19q3 − 9qxy

=⇒ xy =
19q2 − 1

9
.

As a result,

x+ y = 3q

=⇒ (x− y)2 = 9q2 − 4xy

= 9q2 − 4

(
19q2 − 1

9

)
=

5q2 + 4

9
=⇒ [3(x− y)]2 − 5q2 = 4.

Thus there is motivation to explore the Pellian equation α2 − 5β2 = 4, which has infinitely
many solutions (αk, βk) given by αk + βk

√
5 = (3 +

√
5)(9 + 4

√
5)k where k is a non-negative

integer. Then

αk+1 = 9αk + 20βk

βk+1 = 4αk + 9βk.

Since αk+1 ≡ −βk and βk+1 ≡ αk (mod 3), we see that αk is a multiple of 3 when-
ever k is even. Therefore, there are infinitely many pairs (φ, ψ) of positive integers for which
9φ2 − 5ψ2 = 4.

Noting that φ and ψ are necessarily of the same parity, for each such solution let

(x, y, z) =

(
φ+ 3ψ

2
,
3ψ − φ

2
,−2ψ

)
.

It is straightforward to check that the sum and cube sum of x, y, z are both ψ.
For n = 4, simply append to this triple an entry equal to 1 or −1. In this construction, the

CSn-sets for n = 3, 4 have distinct elements. �

Note that

a3 + b3 + c3 = a+ b+ c ⇐⇒
(
a+ 1

3

)
+

(
b+ 1

3

)
=

(
−c+ 1

3

)
,
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assuming a, b > 0 > c. Thus the problem is asking for pairs of tetrahedral numbers which sum
to another tetrahedral number (

x

3

)
+

(
y

3

)
=

(
z

3

)
.

This problem was attacked by several mathematicians. Segal [9] proved for the first time in
1962 that the only solution with x = y is x = y = 4 and z = 5. He also noted computational
efforts before his time. Chowla’s proof of infinitude is repeatedly mentioned in the literature
[3, 8, 9], though it seems that his original paper was not published or has been lost; it does not
appear in his collected works. Since he is mentioned in Segal’s paper, it can be assumed that he
found the proof before 1962. His manipulations were extended by Edgar [3] in 1964 to find two
further families of solutions. It is curious that Edgar refers to a paper of Chowla with Newman,
Segal and Wunderlich which is “to appear”. In 1965, Oppenheim [8] published a new method of
finding infinitely many solutions.

At long last, we complete our discussion with a twist that the reader may have foreseen. We
apply a past proposition to easily deduce the strongest result.

Proposition 9. For each n ≥ 5 that there are infinitely many CSn-sets with distinct elements.

Proof. For a fixed n ≥ 5, we simply append to 〈1, 2, . . . , n − 5〉 a zero-sum CS5-set with all
entries distinct and modulus greater than n− 5; there are certainly infinitely many such CS5-sets
by the constructions in Proposition 5 and their constant multiples. �

6 Conclusion

In our journey, we have answered the most pressing questions about CS-sets. The collected results
are:

1. For each natural n:

a. There are finitely many positive CSn-sets.

b. There is precisely one positive CSn-set with distinct entries, namely 〈1, 2, . . . , n〉.

2. For any CS-set with sum a:

a. It can be extended by an entry to produce another CS-set if and only if for some integer
z,

a = z(z − 1)/2.

b. It can be extended by two entries to produce another CS-set if and only if for some
integers u, v,

2(2a+ 1) = u2 + v2 + (u+ v)2.

3. a. For n = 1, 2, 3, 4, there are no CSn-sets with sum zero.

12



b. For each natural n ≥ 5, there are infinitely many CSn-sets with sum zero.

4. a. For n = 1, 2, there are respectively 1, 2 total CSn-sets.

b. For each natural n ≥ 3, there are infinitely many CSn-sets with distinct entries.

The few results that we have given on CS-sets probably only scratch the surface. Mentioned
throughout are remaining related open problems of interest. There are undoubtedly many other
connections to be made.
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