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Abstract: In this study we define and study the Gaussian Jacobsthal and Gaussian Jacobsthal Lu-
cas polynomials. We give generating function, Binet formula, explicit formula, Q matrix, deter-
minantal representations and partial derivation of these polynomials. By defining these Gaussian
polynomials for special casesGJn(1) is the Gaussian Jacobsthal numbers,Gjn(1) is the Gaussian
Jacobsthal Lucas numbers defined in [2].
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1 Introduction

The complex Fibonacci numbers, Gaussian Fibonacci numbers and their interesting properties are
studied by some authors [3–13]. The authors in [1] defined the Bivariate Gaussian Fibonacci and
Bivariate Gaussian Lucas Polynomials GFn(x, y) and GLn (x, y). They give generating func-
tion, Binet formula, explicit formula and partial derivation of these polynomials. Special cases of
these bivariate polynomials are Gaussian Fibonacci polynomials Fn(x, 1), Gaussian Lucas poly-
nomials Ln(x, 1), Gaussian Fibonacci numbers Fn(1, 1) and Gaussian Lucas numbers Ln(1, 1)

defined in [12]. Also the authors in [2] defined and studied the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers. They give generating functions, Binet formulas, explicit formulas and
Q matrix of these numbers. They also present explicit combinatorial and determinantal expres-
sions, study negatively subscripted numbers and give various identities. Similar to the Jacobsthal
and Jacobsthal Lucas numbers they give some interesting results for the Gaussian Jacobsthal and
Gaussian Jacobsthal Lucas numbers.
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Horadam [7] defined the Jacobsthal and the Jacobsthal Lucas sequences Jn and jn by the
following recurrence relations

Jn = Jn−1 + 2Jn−2 for n ≥ 2

where J0 = 0 and J1 = 1, and

jn = jn−1 + 2jn−2 for n ≥ 2

where J0 = 2 and J1 = 1 respectively.
Jacobsthal and the Jacobsthal Lucas polynomial sequences Jn (x) and jn (x) are defined by

the following recurrence relations

Jn (x) = Jn−1 (x) + 2xJn−2 (x) for n ≥ 2

where J0 = 0 and J1 = 1, and

jn (x) = jn−1 (x) + 2xjn−2 (x) for n ≥ 2

where J0 = 2x and J1 = 1 respectively.
The Gaussian Fibonacci sequence in [12] is GF0 = i, GF1 = 1 and GFn = GFn−1 +GFn−2

for n > 1. One can see that
GFn = Fn + iFn−1

where Fn is the nth usual Fibonacci number.
The Gaussian Lucas sequence in [12] is defined similar to Gaussian Fibonacci sequence as

GL0 = 2− i, GL1 = 1 + 2i, and GLn = GLn−1 +GLn−2 for n > 1. Also it can be seen that

GLn = Ln + iLn−1

where Ln is the usual nth Lucas number.
The authors [2] defined the Gaussian Jacobsthal and the Gaussian Jacobsthal Lucas sequences

GJn and Gjn by the following recurrence relations

GJn+1 = GJn + 2GJn−1, n ≥ 1 (1.1)

with initial conditions GJ0 =
i

2
and GJ1 = 1.

It can be easily seen that GJn = Jn + iJn−1, where Jn is the n′th Jacobsthal number.
The Gaussian Jacobsthal Lucas sequences {Gjn}∞n=0 are defined by the following recurrence

relation
Gjn+1 = Gjn + 2Gjn−1 n ≥ 1 (1.2)

with initial conditions Gj0 = 2− i

2
and Gj1 = 1 + 2i.

Also Gjn = jn + ijn−1, where jn is the nth Jacobsthal Lucas number.
In this study we define and study the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas
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polynomials. Special cases of these polynomials are Gaussian Jacobsthal numbers GJn(1) and
Gaussian Jacobsthal Lucas numbers GLn(1) defined in [2]. We give generating functions, Binet
formulas, explicit formulas and Q matrix of these polynomials. We also present explicit combi-
natorial and determinantal expressions, and give various identities. Similar to the Jacobsthal and
Jacobsthal Lucas polynomials we give some interesting results for the Gaussian Jacobsthal and
Gaussian Jacobsthal Lucas polynomials.

2 The Gaussian Jacobsthal and Gaussian Jacobsthal
Lucas polynomials

Definition 1. The Gaussian Jacobsthal polynomials {GJn(x)}∞n=0 are defined by the following
recurrence relation

GJn+1(x) = GJn(x) + 2xGJn−1(x), n ≥ 1 (2.1)

with initial conditions GJ0 (x) =
i

2
and GJ1 (x) = 1.

It can be easily seen that
GJn(x) = Jn(x) + ixJn−1(x)

where Jn(x) is the n′th Jacobsthal polynomial.

Definition 2. The Gaussian Jacobsthal Lucas polynomials {Gjn(x)}∞n=0 are defined by the fol-
lowing recurrence relation

Gjn+1(x) = Gjn(x) + 2xGjn−1(x) n ≥ 1 (2.2)

with initial conditions Gj0 (x) = 2− i

2
and Gj1 (x) = 1 + 2ix.

Also Gjn(x) = jn(x) + ixjn−1(x), where jn(x) is the nth Jacobsthal Lucas polynomial.
We observe that GJn (1) = GJn and Gjn(1) = Gjn where GJn and Gjn are the Gaussian

Jacobsthal and Gaussian Jacobsthal Lucas numbers defined in 1.1 and 1.2 recursively .
For later use the first few terms of the sequences are shown in the following table

n GJn (x) Gjn (x)

0
i

2
2− i

2
1 1 1 + 2xi

2 1 + xi 4x+ 1 + xi

3 2x+ 1 + xi 6x+ 1 + (4x+ 1)xi

4 4x+ 1 + (2x+ 1)xi 8x2 + 8x+ 1 + (6x+ 1)xi

5 4x2 + 6x+ 1 + (4x+ 1)xi 20x2 + 10x+ 1 + (8x2 + 8x+ 1)xi

6 12x2+8x+1+(4x2 + 6x+ 1)xi 16x3+36x2+12x+1+(20x2+10x+1)xi
...

...
...
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2.1 Some properties

Theorem 1. The generating function for Gaussian Jacobsthal polynomials is

g(t, x) =
∞∑
n=0

GJn(x)t
n =

2t+ i(1− t)
2− 2t− 4xt2

and for Gaussian Jacobsthal Lucas polynomials is

h(t, x) =
∞∑
n=0

Gjn(x)t
n =

4− 2t+ i(t− 1 + 4xt)

2− 2t− 4xt2
.

Proof. Let g (t, x) be the generating function of Gaussian Jacobsthal polynomial sequenceGJn(x),
then

g(t, x)− tg(t, x)− 2xt2g(t, x) = GJ0(x) +GJ1(x)t−GJ0(x)t

+
∞∑
n=2

tn [GJn(x)−GJn−1(x)− 2xGJn−2(x)]

=
i

2
+

(
1− i

2

)
t

=
2t+ i (1− t)

2

by taking g(t, x) parenthesis we get

g(t, x) =
2t+ i(1− t)
2− 2t− 4xt2

.

Let α(x) and β(x) be the roots of the characteristic equation

t2 − t− 2x = 0

of the recurrence relation (2.1). Then

α(x) =
1 +
√
8x+ 1

2
, β(x) =

1−
√
8x+ 1

2
.

Note that α(x) + β(x) = 1 and α(x)β(x) = −2x. Now we can give the Binet formula for the
Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials.

Theorem 2. For n ≥ 0

GJn(x) =
αn(x)− βn(x)

α(x)− β(x)
+ ix

αn−1(x)− βn−1(x)

α(x)− β(x)
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and
Gjn(x) = αn(x) + βn(x) + ix

(
αn−1(x) + βn−1(x)

)
.

Proof. Theorem can be proved by mathematical induction on n

Theorem 3. The explicit formula of Gaussian Jacobsthal Polynomials is

GJn(x) =

bn−1
2 c∑

k=0

(
n− k − 1

k

)
(2x)k + i

bn−2
2 c∑

k=0

(
n− k − 2

k

)
2kxk+1.

Theorem 4. The explicit formula of Gaussian Jacobsthal Lucas Polynomials is

Gjn(x) =

bn2 c∑
k=0

n

n− k

(
n− k
k

)
(2x)k + i

bn−1
2 c∑

k=0

n− 1

n− k − 1

(
n− k − 1

k

)
2kxk+1.

Theorem 5. Let Dn(x) denote the n× n tridiagonal matrix as

Dn(x) =



1 i 0 · · · 0

−x 1 2x
. . . ...

0 −1 1
. . . 0

... . . . . . . . . . 2x

0 · · · 0 −1 1


, n ≥ 1

and let D0(x) =
i

2
. Then

detDn(x) = GJn(x), n ≥ 1.

Proof. By induction on n we can prove the theorem. For n = 1 and n = 2

detD1(x) = 1 = GJ1(x)

detD2(x) = 1 + xi = GJ2(x)

Assume that the theorem is true for n− 1 and n− 2

detDn−1(x) = GJn−1(x)

detDn−2(x) = GJn−2(x)

Then

detDn(x) = detDn−1(x) + 2x detDn−2(x)

= GJn−1(x) + 2xGJn−2(x)

= GJn(x)
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Theorem 6. Let Hn(x) denote the n× n tridiagonal matrix defined as

Hn(x) =



2− i
2

x
2
− 1 0 · · · 0

1 ix 2x
. . . ...

0 −1 1
. . . 0

... . . . . . . . . . 2x

0 · · · 0 −1 1


, n ≥ 1.

Then
detHn(x) = Gjn−1(x), n ≥ 0.

Proof. By induction on n we can prove the theorem. For n = 1and n = 2

detD1(x) = 2− i

2
= Gj0(x)

detD2(x) = 1 + 2xi = Gj1(x)

Assume that the theorem is true for n− 1 and n− 2

detDn−1(x) = Gjn−2(x)

detDn−2(x) = GjJn−3(x)

Then

detDn(x) = detDn−1(x) + 2x detDn−2(x)

= Gjn−2(x) + 2xGjn−3(x)

= Gjn−1(x)

Now we introduce the matrices Q (x) and P that plays the role of the Q-matrix of Fibonacci
numbers. Let Q (x) and P denote the 2× 2 matrices defined as

Q (x) =

[
1 2x

1 0

]
, P =

[
1 + ix 1

1 i
2

]
and R =

[
4x+ 1 + xi 1 + 2xi

1 + 2xi 2− i
2

]

Then we can give the following theorems:

Theorem 7. Let n ≥ 1. Then

Qn (x)P =

[
GJn+2(x) GJn+1(x)

GJn+1(x) GJn(x)

]

where GJn(x) is the nth Gaussian Jacobsthal Polynomial.
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Proof. We can prove the theorem by induction on n For n = 1[
1 2x

1 0

][
1 + ix 1

1 i
2

]
=

[
2x+ 1 + ix 1 + ix

1 + ix 1

]

=

[
GJ3(x) GJ2(x)

GJ2(x) GJ1(x)

]

Assume that the theorem holds forn = k, that is[
1 2x

1 0

]k [
1 + ix 1

1 i
2

]
=

[
GJk+2(x) GJk+1(x)

GJk+1(x) GJk(x)

]

Then for n = k + 1 we have[
1 2x

1 0

]k+1 [
1 + ix 1

1 i
2

]
=

[
1 2x

1 0

][
1 2x

1 0

]k [
1 + ix 1

1 i
2

]

=

[
1 2x

1 0

][
GJk+2(x) GJk+1(x)

GJk+1(x) GJk(x)

]

=

[
GJk+3(x) GJk+2(x)

GJk+2(x) GJk+1(x)

]

Theorem 8. Let n ≥ 1. Then

Qn (x)R =

[
Gjn+2(x) Gjn+1(x)

Gjn+1(x) Gjn(x)

]

where Gjn(x) is the nth Gaussian Jacobsthal-Lucas Polynomial.

Proof. We can prove the theorem by induction on n For n = 1

Q (x)R =

[
1 2x

1 0

][
4x+ 1 + xi 1 + 2xi

1 + 2xi 2− i
2

]

=

[
6x+ 1 + ix (4x+ 1) 4x+ 1 + ix

4x+ 1 + ix 1 + 2ix

]

=

[
Gj3(x) Gj2(x)

Gj2(x) Gj1(x)

]
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Assume that the theorem holds for n = k, that is

Qk (x)R =

[
1 2x

1 0

]k [
4x+ 1 + xi 1 + 2xi

1 + 2xi 2− i
2

]

=

[
Gjk+2(x) Gjk+1(x)

Gjk+1(x) Gjk(x)

]

Then for n = k + 1 we have

Qk+1 (x)R =

[
1 2x

1 0

]k+1 [
4x+ 1 + xi 1 + 2xi

1 + 2xi 2− i
2

]

=

[
1 2x

1 0

][
1 2x

1 0

]k [
4x+ 1 + xi 1 + 2xi

1 + 2xi 2− i
2

]

=

[
1 2x

1 0

][
Gjk+2(x) Gjk+1(x)

Gjk+1(x) Gjk(x)

]

=

[
Gjk+3(x) Gjk+2(x)

Gjk+2(x) Gjk+1(x)

]

Theorem 9. (Cassini Identity) For n ≥ 1

GJn−1(x)GJn+1(x)−GJ2
n(x) = (−1)n 2n−2xn−1 (2 + x− i)

Proof. We can prove the theorem by matrices method
First of all we determine the determinants of the matrices

detQn−1 (x) =

∣∣∣∣∣ 1 2x

1 0

∣∣∣∣∣
n−1

= (−2x)n−1

detP =

∣∣∣∣∣ 1 + ix 1

1 i
2

∣∣∣∣∣ = −1

2
(2 + x− i)

by the previous theorem

Qn−1 (x)P =

[
GJn+1(x) GJn(x)

GJn(x) GJn−1(x)

]
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we get the determinants of the matrices

GJn+1(x)GJn−1(x)−GJ2
n(x) = det

(
Qn−1 (x)P

)
= detQn−1(x) detP

= (−2x)n−1 −1
2

(2 + x− i)

= (−1)n 2n−2xn−1 (2 + x− i)

As a result

GJn+1(x)GJn−1(x)−GJ2
n(x) = (−1)n 2n−2xn−1 (2 + x− i)

Theorem 10. For n ≥ 1

Gjn−1(x)Gjn+1(x)−Gj2n(x) = (8x+ 1) (x+ 2− i) (−1)n−1 2n−2xn−1.

Proof. We can prove the theorem by matrices method by the previous theorem

Qn−1 (x)R =

[
Gjn+1(x) Gjn(x)

Gjn(x) Gjn−1(x)

]

we get the determinants of the matrices

GJn+1(x)GJn−1(x)−GJ2
n(x) = det

(
Qn−1 (x)R

)
= detQn−1(x) detR

= (−2x)n−1 1
2
(8x+ 1) (x+ 2− i)

= (−1)n−1 2n−2xn−1 (8x+ 1) (2 + x− i)

As a result

Gjn−1(x)Gjn+1(x)−Gj2n(x) = (8x+ 1) (x+ 2− i) (−1)n−1 2n−2xn−1.

Theorem 11. For n ≥ 1

Gj2n(x)− (1 + 8x)GJ2
n(x) = (x+ 2− i) (−1)n 2n+1xn.

The theorem can be proved by induction on n, thus we omit the proof.

Corollary 1. [2] (Cassini Identity) If x = 1 then

GJn−1GJn+1 −GJ2
n = (3− i) (−1)n 2n−2
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Corollary 2. [2] If x = 1 then

Gjn−1Gjn+1 −Gj2n = 9 (3− i) (−1)n−1 2n−2

Theorem 12. For n ≥ 1

Gjn(x) = GJn+1(x) + 2xGJn−1(x).

The theorem can be proved by induction on n, thus we omit the proof.

Corollary 3. [2] If x = 1 then
Gjn = GJn+1 + 2GJn−1

Theorem 13. For n ≥ 1

GJn(x) =
Gjn+1(x) + 2xGjn−1(x)

1 + 8x
.

The theorem can be proved by induction on n, thus we omit the proof.

Corollary 4. [2] If x = 1 then

GJn =
Gjn+1 + 2Gjn−1

9

Theorem 14. The sums of the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials
are given as:

(i)
n∑

k=0

GJk(x) =
1

2x
[GJn+2(x)− 1]

(ii)
n∑

k=0

Gjk(x) =
1

2x
[Gjn+2(x)− (1 + 2xi)]

Proof. For n ≥ 1 we have GJn+1(x) = GJn(x) + 2xGJn−1(x)

GJn−1(x) =
1

2x
(GJn+1(x)−GJn(x))

From this equation

GJ0(x) =
1

2x
(GJ2(x)−GJ1(x))

GJ1(x) =
1

2x
(GJ3(x)−GJ2(x))

GJ2(x) =
1

2x
(GJ4(x)−GJ3(x))

...

GJn−1(x) =
1

2x
(GJn+1(x)−GJn(x))

GJn(x) =
1

2x
(GJn+2(x)−GJn+1(x))
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By adding both sides of the equation we get

n∑
k=0

GJk(x) =
1

2x
(GJn+2(x)−GJ1(x))

=
1

2x
(GJn+2(x)− 1)

this completes the proof

Theorem 15. For n ≥ 1

GJn (x)Gjn (x) = GJ2n (x) + ixJ2n−1 (x)− x2J2n−2 (x)

whereJn is the nth Jacobsthal polynomial.

Proof. By Binet formulas of GJn (x) and Gjn (x)

GJn(x)Gjn(x) =

[
αn(x)− βn(x)

α(x)− β(x)
+ ix

αn−1(x)− βn−1(x)

α(x)− β(x)

]
×
[
αn(x) + βn(x) + ix

(
αn−1(x) + βn−1(x)

)]
=

α2n(x)− β2n(x)

α(x)− β(x)
+ ix

α2n−1(x)− β2n−1(x)

α(x)− β(x)

+ix
α2n−1(x)− β2n−1(x)

α(x)− β(x)
− x2α

2n−2(x)− β2n−2(x)

α(x)− β(x)
= GJ2n (x) + ixJ2n−1 − x2J2n−2

This completes the proof

Corollary 5. [2] If x = 1 then

GJnGjn = GJ2n + iJ2n−1 − J2n−2.

Theorem 16. For the partial derivatives we have

∂Gjn(x)

∂x
= 2nGJn−1 (x) + iJn (x)

where Jn(x) is the nth Jacobsthal polynomial.

The theorem can be proved from the partial derivation of the explicit formula of Gaussian
Jacobsthal Lucas polynomials.
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