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On integer solutions of x4 + y4 − 2z4 − 2w4 = 0
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Abstract: In this article, we study the quartic Diophantine equation x4 + y4 − 2z4 − 2w4 = 0.
We find non-trivial integer solutions. Furthermore, we show that when a solution has been found,
a series of other solutions can be derived. We do so using two different techniques. The first is a
geometric method due to Richmond, while the second involves elliptic curves.
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1 Introduction

Diophantine equations have long been of interest to mathematicians. In this work, we consider
the quartic surface

ax4 + by4 + cz4 + dw4 = 0, a, b, c, d ∈ Z \ {0}. (1.1)

For arbitrary values of a, b, c, and d, there does not appear to be many results on finding integral
solutions [5, 10, 14]. From Dickson’s History [5], it appears that the first equation of the form
(1.1) that has been extensively investigated is the classical one proposed by Euler, in which a = 1,
b = 1, c = −1, and d = −1. See for example, [2, 12, 13, 18]. Bernstein [1] found there are 518
solutions with 0 ≤ x ≤ y ≤ 106 and 0 ≤ z ≤ w ≤ 106.

The other special case of (1.1) to receive much interest is when a = 1, b = 1, c = 1, and
d = −1. Euler had conjectured there were no integer solutions, however Elkies found a solution
in [6] despite early attempts by [13, 17] which had failed to find one. Subsequently a few other
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solutions have been found [1, 9]. We note other specific cases have been studied [3, 8]. There have
also been computations to find the smallest integer solutions when max{|a|, |b|, |c|, |d|} ≤ 15 [7].

In this work we study the particular equation with a = 1, b = 1, c = −2, and d = −2, namely

x4 + y4 − 2z4 − 2w4 = 0. (1.2)

It is easy to see if (x0, y0, z0, w0) is a solution to (1.2), then so is (kx0, ky0, kz0, kw0) for any
integer k. We call an integral solution (x, y, z, w) primitive if 0 ≤ x ≤ y, 0 ≤ z ≤ w,

and in addition no integer k > 1 divides each of x, y, z, and w. It is trivial to see the first
primitive solution is (1, 1, 0, 1). The next primitive solution is (19, 21, 7, 20). Searching for so-
lutions with 0 ≤ x ≤ y ≤ 3000 found the additional solutions (181, 2077, 1247, 1620) and
(607, 1999, 951, 1640). Computer searches can be used to find all solutions below a given bound,
however it is challenging to find an infinite family of solutions.

Our main result is the computation of new primitive solutions of (1.2). We use two different
methods to find these solutions, each of which lead to an infinite number of primitive solutions.
The first method is from Richmond [15]. Under the condition that abcd is a square, he showed
that if a rational solution to (1.1) is known then others can be found. The second method uses
the theory of elliptic curves. We will show that every rational point on a certain elliptic curve
E leads to an integral solution to (1.2). Since E has an infinite number of rational points (i.e.,
rank(E) = 1), this will yield an infinite number of solutions.

2 Determination of primitive solutions

In this section we compute primitive integral solutions to the quartic Diophantine equation

x4 + y4 − 2z4 − 2w4 = 0.

We first show how starting with the solution (19, 21, 7, 20), Richmond’s method can be used to
generate more primitive solutions. We then show how to find solutions from rational points on
the elliptic curve Y 2 = X3 − 36X .

2.1 Richmond’s method

Richmond [15] considered the surface (1.1) with the additional constraint that abcd is a square
number. Suppose P = (x0, y0, z0, w0) is a rational point on this surface. Richmond showed that
the condition abcd being square implies that a rational line ` can be drawn through P to meet the
surface in three points at P . Hence if the line does not lie on the surface, then the fourth point of
intersection, will also be rational. Thus starting with a single point P , other rational points can
be found. We note that while Richmond’s proof is almost entirely geometric, Mordell was able
to reprove the same result in a different way [14].

For the curve (1.2) this work focuses on, we have abcd = 4. We can thus use Richmond’s
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technique, with P = (19, 21, 7, 20). It is easy to calculate the equation of the tangent plane at P :

193x+ 213y − 2 · 73z − 2 · 203w = 0.

We likewise compute the inflectional tangent at P :

192x2 + 212y2 − 2 · 72z2 − 2 · 202w2 = 0.

Let Q be any point, and following Richmond, we write it in the form Q = (19p, 21q, 7r, 20s), for
some p, q, r, s. Then if Q lies on both the tangent and inflectional tangents at P , we have

194p+ 214q − 2 · 74r − 2 · 204s = 0, (2.1)

194p2 + 214q2 − 2 · 74r2 − 2 · 204s2 = 0. (2.2)

Note that for any value of t, if we replace (p, q, r, s) by (p + t, q + t, r + t, s + t) then (2.1) and
(2.2) remain valid. We can thus assume p + q + r + s = 0, or s = −p − q − r. Solving for r in
(2.1) we find r = −(450321p+ 514481q)/315198. Substituting into (2.2), we obtain a quadratic
equation in p and q:

1276746718401p2 − 4052230076802pq + 1112497118401q2 = 0.

The condition abcd being square ensures that the quadratic factors:

(188391p− 57191q)(6777111p− 19452311q) = 0.

Taking the first factor, we set q = 188391p/57191 and hence r = −389209p/57191, s =

143627p/57191. This leads to the rational solution (19p, 3956211p/57191, −2724463p/57191,
2872540p/57191). If we let p = 57191 we obtain the primitive integral solution (1086629,
3956211, 2724463, 2872540). If instead we take the second factor, we end up with the prim-
itive solution (142319331, 369593909, 252477340, 271973023).

We see that beginning with the rational point P , we have found two new primitive solutions
to (1.2). Richmond’s method can be applied repeatedly to obtain new solutions.

2.2 Solutions from a congruent elliptic curve

We assume a basic familiarity with elliptic curves (see, for example, [11]). Our second method
uses birational transformations to relate the surface (1.2) to an elliptic curve. Let x = z + t and
y = z − t, where t is a (rational) parameter. Then (1.2) becomes

w4 − t4 = 6(tz)2. (2.3)

We need the following result of Cohen.

Proposition 2.1. [4, Prop. 6.5.6] Let c be a nonzero integer. The equation X4 − Y 4 = cZ2 has a
solution with XY Z 6= 0 if and only if |c| is a congruent number. More precisely, if X4−Y 4 = cZ2
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with XY Z 6= 0 then V 2 = U(U2 − c2) with

(U, V ) = (−cY 2/X2, c2Y Z/X3),

and conversely if V 2 = U(U2 − c2) with V 6= 0 then X4 − Y 4 = cZ2, with

(X, Y, Z) =
(
U2 + 2cU − c2, U2 − 2cU − c2, 4V (U2 + c2)

)
.

An integer c is congruent if it is the area of a right triangle with rational side lengths and area
c. It is well-known that the elliptic curve V 2 = U(U2 − c2) has a rational point (with V 6= 0)
if and only if c is a congruent number [11]. For this reason we refer to V 2 = U(U2 − c2) as a
congruent elliptic curve.

Since the area of a 3-4-5 right triangle is 6, then 6 is a congruent number. Using Proposition
2.1 on the curve (2.3), we have mapped our surface into the congruent elliptic curve

E6 : V
2 = U(U2 − 36).

For our next result, recall that any rational point P on an elliptic curve V 2 = U3 + aU + b can be
written in the form P =

(
A
B2 ,

C
B3

)
, with A,B,C ∈ Z.

Corollary 2.2. Suppose
(

A
B2 ,

C
B3

)
is a rational point on the elliptic curve E6, with A,B,C ∈ Z.

Let 
x = 1296B8 + 864B6A+ 144B5C + 72B4A2 − 24B2A3 + 4BA2C + A4,

y = 1296B8 + 864B6A− 144B5C + 72B4A2 − 24B2A3 − 4BA2C + A4,

z = 144B5C + 4BA2C,

w = 1296B8 − 216B4A2 + A4.

Then (x, y, z, w) is an integral solution to the Diophantine equation x4 + y4 − 2z4 − 2w4 = 0.

Proof. We have w = U2 + 12U − 36, t = U2 − 12U − 36, tz = 4V (U2 + 36) by the rational
transformations used in Proposition 2.1. Since x = z + t and y = z − t we have

x =
4U2V + 144V + U4 − 24U3 + 72U2 + 864U + 1296

U2 − 12U − 36
,

y =
−4U2V − 144V + U4 − 24U3 + 72U2 + 864U + 1296

U2 − 12U − 36
,

z =
4V (U2 + 36)

U2 − 12U − 36
,

w = U2 + 12U − 36.
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Substituting in U = A
B2 and V = C

B3 , we get

x =
4CBA2 + 144CB5 + A4 − 24A3B2 + 72A2B4 + 864AB6 + 1296B8

B4(A2 − 12AB2 − 36B4)
,

y =
−4CBA2 − 144CB5 + A4 − 24A3B2 + 72A2B4 + 864AB6 + 1296B8

B4(A2 − 12AB2 − 36B4)
,

z =
4C(A2 + 36B4)

B3(A2 − 12AB2 − 36B4)
,

w =
A2 + 12AB2 − 36B4

B4
.

Using the fact that (kx, ky, kz, kw) is a solution to (1.2) if (x, y, z, w) is, we can eliminate the
denominators. The result now follows immediately.

The elliptic curve E6 is of rank 1, with the generator P = (−3, 9) [16]. There are thus an
infinite number of rational points on E6. By Corollary 2.2, we see there will be infinitely many
integer solutions of the Diophantine equation (1.2). By suitably changing the signs and swapping
x and y (or z and w), we can make each solution primitive.

Computations show that this corollary yields new solutions. For example, the point 2P =

(25
4
,−35

8
) on E6 leads to (1661081, 988521, 336280, 1437599) on (1.2), which is smaller than the

solutions obtained by using Richmond’s method once. The point 3P = (−1587/1369,−321057/50653)
gives the solution (x, y, z, w) = (22394369951939, 59719152671941, 41056761311940, 43690772126393).

3 Conclusion

In this work, we have shown two different ways to find infinitely many integer solutions to the
quartic Diophantine equation (1.2). While computer searches can find all solutions below a given
bound, it is non-trivial to find infinitely many.

The equation (1.2) we have focused on is the n = 4 case of the more general equation

xn + yn − 2zn − 2wn = 0. (3.1)

When n = 2, the identity
(z + w)2 + (z − w)2 = 2(z2 + w2)

gives an infinite parameterized family of solutions.
For n = 3, the strong version of Conjecture 6.4.26 of [4] implies that for any integer N ,

then N = x3 + y3 + 2z3 for some integers x, y, z. So for any integer w, if we let N = 2w3,
there is a solution to (3.1) (assuming the conjecture). More concretely, we can show there are
an infinite number of primitive solutions using the elliptic curve method of Section 2.2. If we let
z = y − t and w = y + t, then some simple algebra shows we can simplify to the elliptic curve
Y 2 = X3 − 81, where X = 3x/y and Y = 18t/y. This is a rank 1 curve, with generator (13,46).
Each rational point (X, Y ) on the curve leads to the solution (6X, 18, 18 − Y, 18 + Y ). We can
make these solutions integral by scaling.
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We note that Manin conjectured that all rational solutions of the n = 3 case of (3.1) can be
obtained from a finite number of solutions (xi, yi, zi, wi) by a succession of secant and tangent
processes [4, Conj. 6.4.1]. Future work could involve finding these finite number of generating
solutions. It would also be interesting to find integer solutions to (3.1), for n ≥ 5. Preliminary
computer searches have not found any non-trivial solutions.
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