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Abstract: We determine the best positive constants a and b such that(
cosx+ 2

3

)a

<
sinx

x
<

(
cosx+ 2

3

)b

.

Similar sharp inequalities are also considered.
Keywords: Inequalities, Trigonometric functions, Hyperbolic functions, Monotonicity theorems.
AMS Classification: 26D05, 26D07, 26D99.

1 Introduction

In paper [4] the author has determined the best positive constants p and q such that(
sinhx

x

)p

<
x

sinx
<

(
sinhx

x

)q

, (1.1)

where x ∈ (0, π/2). In fact one has p = 1 and q ≈ 1.18. Similar results have been obtained in
paper [3]:

The best constants r, s > 0 such that

1

(coshx)r
<

sinx

x
<

1

(coshx)s
, x ∈

(
0,
π

2

)
(1.2)

are r ≈ 0.49 . . ., s =
1

3
.

The best constants u, v > 0 such that(
sinhx

x

)u

<
2

cosx+ 1
<

(
sinhx

x

)v

, x ∈
(
0,
π

2

)
(1.3)

are u = 3/2, v ≈ 1.81 . . ..
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The famous Cusa-Huygens inequality (see e.g. [2]) states that for any x ∈ (0, π/2) one has

sinx

x
<

cosx+ 2

3
. (1.4)

As it is well-known that (see e.g. [2])

sinx

x
>

cosx+ 1

2
, (1.5)

and as an immediate computation gives

cosx+ 1

2
>

(
cosx+ 2

3

)2

(equivalent with (cosx − 1)(2 cos x + 1) < 0), clearly one arises the question on the constants
a, b > 0 such that (

cosx+ 2

3

)a

<
sinx

x
<

(
cosx+ 2

3

)b

. (1.6)

Similarly, as it is shown in [2], one has

sinx

x
>

(
cosx+ 1

2

)2/3

,

by (1.5) we can study the constants c and d > 0 such that(
cosx+ 1

2

)c

<
sinx

x
<

(
cosx+ 1

2

)d

, (1.7)

where, as in the case of (1.6), x ∈ (0, π/2).
The hyperbolic variants of these inequalities may be studied, too. In what follows, we shall

always assume that x ∈ (0, π/2).

2 Main results

First, by using the method of [4] we shall prove the following:
Theorem 2.1. The best positive constants a and b in inequality (1.6) are a = (lnπ/2)/(ln 3/2) ≈
1, 113 . . . and b = 1.
Proof. We shall use the following auxiliary results:
Lemma 2.1. One has, for any x ∈ (0, π/2), the inequalities

ln
x

sinx
<

sinx− x cosx
2 sinx

(2.1)

and
ln

3

2 + cos x
>

x sinx

2(2 + cos x)
. (2.2)

Proof. Inequality (2.1) is proved in [4] (see Lemma 2.2). For the proof of (2.2) consider the
application

a(x) = ln
3

2 + cos x
− x sinx

2(2 + cos x)
, x ∈

[
0,
π

2

)
.
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For the derivative of this function one can deduce, by an elementary computation:

2(2 + cos x)2a′(x) = 2 sinx+ sinx cosx− 2x cosx− x = b(x).

Now b′(x) = 2 sinx(x− sinx) > 0, and as b(0) = 0, we get b(x) ≥ b(0) = 0 for x ≥ 0. This
in turn implies a′(x) ≥ 0 for x ≥ 0 and as a(0) = 0, we get a(x) > 0 for x > 0 and x < π/2.
This proves relation (2.2) of Lemma 2.1.

Proof of Theorem 2.1. Let us introduce the application

h(x) =
ln(x/ sinx)

ln(3/(2 + cos x))
, x ∈

(
0,
π

2

)
and

f(x) = ln(x/ sinx), g(x) = ln(3/(2 + cos x)).

One gets easily

g2(x)h′(x) =
sinx− x cosx

x sinx
ln

3

2 + cos x
− sinx

2 + cos x
ln

x

sinx
. (2.3)

By inequality (2.1) one can write

g2(x)h′(x) >
sinx− x cosx

sinx

[
1

x
ln

3

2 + cos x
− sinx

2(2 + cos x)

]
,

so by (2.2), the paranthesis being strictly positive, we get by (2.3)

h′(x) > 0.

Thus h(x) is a strictly increasing function. This implies

lim
x→0

h(x) = 1 < h(x) < h
(π
2

)
=

ln π/2

ln 3/2
,

so we get the best constants in (1.6), a =
ln π/2

ln 3/2
≈ 1, 113 . . . and b = 1. This proves Theorem

2.1.
In what follows, we shall prove by another method the following result:

Theorem 2.2. The best positive constants c and d in inequality (1.7) are c =
2

3
and

d =
ln(π/2)

ln 2
≈ 0.651 . . . .

Proof. The following variant of L’Hôpital’s rule, known also as the “monotone form of L’Hôpital’s
rule” will be applied (see [1], p. 106):
Lemma 2.2. For a < b, let f , g be continuous on [a, b], differentiable on (a, b) and g′ never

vanish on (a, b). If f ′/g′ is (strictly) increasing (decreasing) on (a, b), then so are
f(x)− f(a)
g(x)− g(a)

and
f(x)− f(b)
g(x)− g(b)

.
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Let f(x) = ln
2

cosx+ 1
and g(x) = ln

x

sinx
, where [a, b] = [0, π/2]. Then,

f ′(x)

g′(x)
=

x sin2 x

(sinx− x cosx)(cosx+ 1)
=

2x sin2 x

2
sinx− x cosx

=
f1(x)

g1(x)
.

One has

f ′
1(x)

g′1(x)
=

2 sin
x

2

(
sin

x

2
+ x cos

x

2

)
x sinx

= 1 +
tan

x

2
x

.

As for k(x) =
tan

x

2
x

one has k′(x) =
x− sinx

2 cos2
x

2

> 0, the function k(x) is strictly increasing. As

f1(0) = g1(0) = 0,
f1(x)

g1(x)
will be strictly increasing. This in turn implies the same for the function

f(x)

g(x)
= h(x). As (1.7) may be written as

1

c
< h(x) <

1

d
, and as h(x) is strictly increasing, we

get
1

c
= lim

x→0
h(x) =

3

2
,
1

d
= h

(π
2

)
=

ln 2

ln(π/2)
.

This proves Theorem 2.2.
There exist also hyperbolic variants to these theorems. We prove one of these theorems,

namely:
Theorem 2.3. The best positive constants m and n such that(

coshx+ 1

2

)m

<
sinhx

x
<

(
coshx+ 1

2

)n

, x > 0

are m =
2

3
and n = 1.

Proof. As in the proof of Theorem 2.2, let

h(x) = ln

(
sinhx

x

)
/ ln

(
coshx+ 1

2

)
= f(x)/g(x), x ∈ (0,+∞).

Then, by elementary computations we get

f ′(x)

g′(x)
=
x coshx− sinhx

2x sinh2 x

2

=
f1(x)

g1(x)
.

One gets
f ′
1(x)

g′1(x)
=

x sinhx

2 sinh
x

2

(
sinh

x

2
+ x cosh

x

2

) =
1

1 +
(
tanh

x

2

)
/x
.

Put l(x) =
tanh

x

2
x

. As l′(x) =
x− sinhx

2 cosh2 x

2

< 0, l(x) is strictly decreasing for any x > 0, so

f ′
1(x)

g′1(x)
is strictly increasing. As f ′

1(0) = g′1(0) = 0 and f(0) = g(0) = 0,
f(x)

g(x)
= h(x) will
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be strictly increasing on (0, b) for any b > 0. Thus, we get from Lemma 2.2 that h(x) is strictly
increasing for any x ∈ (0, b); thus

lim
x→0

h(x) =
2

3
< h(x) < h(b) = ln

sinh b

b
/ ln

(
cosh b+ 1

2

)
.

As lim
b→+∞

h(b) = 1, we get m =
2

3
and n = 1, so Theorem 2.3 follows.

References
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Notes added in proof

This paper was written in 2010, and sent to the journal September 19, 2011.
Meantime, paper [4] (sent May 9, 2011) has been published in Vol. 15, 2012, No. 2, 409–

413. A Referee has pointed out that, Theorem 2.1 of this paper has been discovered also in the
following work: C.-P. Chen and W.-S. Cheung, Sharp Cusa and Becker–Stark inequalities, J.
Ineq. Appl., 2011:136.

As one can see, our method is based on the earlier paper [4], while the above work uses
completely different (and more complicated) arguments. As this paper appeared 7 December
2011, clearly the result has been sent to journals about the same times independently.
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