A note on the density of the Greatest Prime Factor

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

e-mail: jakimczu@mail.unlu.edu.ar

Abstract: Let P(n) be the greatest prime factor of a positive integer $n \geq 2$. Let $L_{\alpha}(n)$ be the number of $2 \leq k \leq n$ such that $P(k) > k^{\alpha}$, where $0 < \alpha < 1$. We prove the following asymptotic formula

$$L_{\alpha}(n) = (1 - \rho(\alpha))n + O\left(\frac{n}{\log n}\right),$$

where $\rho(\alpha)$ is the Dickman's function.

Keywords: Greatest prime factor, Distribution.

AMS Classification: 11A99, 11B99.

1 Introduction, notation and preliminary results

Let P(n) be the largest prime factor of a positive integer $n \geq 2$. Note that if n is prime then P(n) = n. Therefore $2 \leq P(n) \leq n$ for all $n \geq 2$.

Let $L_{\alpha}(n)$ be the number of $2 \le k \le n$ such that $P(k) > k^{\alpha}$, where $0 < \alpha < 1$.

J. Kemeny [1] proved the following asymptotic formula

$$L_{1/2}(n) = n\log 2 + O\left(\frac{n}{\log n}\right). \tag{1}$$

Consequently

$$\lim_{n \to \infty} \frac{L_{1/2}(n)}{n} = \log 2.$$

That is, the probability or density of the n such that $P(n) > \sqrt{n}$ is $\log 2$.

Let $0 < \alpha < 1$ a fixed real number. Let $\epsilon_{\alpha}(x)$ be the set of positive integers not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $[0, x^{\alpha}]$. That is, $\epsilon_{\alpha}(x)$ is the set of positive integers not exceeding x such that the largest prime factor of these positive integers pertain to the interval $[0, x^{\alpha}]$. We assume that 1 pertains to the set $\epsilon_{\alpha}(x)$. These

numbers are called smooth numbers. The number of positive integers pertaining to the set $\epsilon_{\alpha}(x)$ we denote $N_1(\alpha, x)$. It is well-known [3] the following formula

$$N_1(\alpha, x) = \rho(\alpha)x + O\left(\frac{x}{\log x}\right). \tag{2}$$

Therefore, the positive integers in the set $\epsilon_{\alpha}(x)$ have positive density $\rho(\alpha)$ (this function of α is called Dickman's function). It is a positive, strictly increasing and continuous function on the interval (0,1). Besides $0 < \rho(\alpha) < 1$.

Let $\beta_{\alpha}(x)$ be the set of positive integers not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $(x^{\alpha}, x]$. That is, $\beta_{\alpha}(x)$ is the set of positive integers not exceeding x such that the largest prime factor of these positive integers pertain to the interval $(x^{\alpha}, x]$.

The number of positive integers pertaining to the set $\beta_{\alpha}(x)$ we denote $N_2(\alpha, x)$.

Note that the sets $\beta_{\alpha}(x)$ and $\epsilon_{\alpha}(x)$ are disjoints and $\beta_{\alpha}(x) \cup \epsilon_{\alpha}(x) = A$, where A is the set of positive integers k such that $1 \le k \le \lfloor x \rfloor$. Consequently (see (2))

$$N_2(\alpha, x) = (1 - \rho(\alpha))x + O\left(\frac{x}{\log x}\right). \tag{3}$$

Let us consider a prime p such that $2 \le p \le n$. The set of multiples of p not exceeding n will be denoted A(n, p). Therefore,

$$A(n,p) = \left\{ p.1, p.2, p.3, \dots, p. \left| \frac{n}{p} \right| \right\}. \tag{4}$$

Let $B_1(n,p)$ be the set of positive integers not exceeding n such that the prime p is their largest prime factor. We denote $B_2(n,p)$ the number of elements in the set $B_1(n,p)$. Note that $B_1(n,p) \subset A(n,p)$. Then,

$$\sum_{2 \le p \le n} B_2(n, p) = n - 1,$$

$$N_1(\alpha, n) = 1 + \sum_{2 \le p \le n^{\alpha}} B_2(n, p),$$

$$N_2(\alpha, n) = \sum_{n^{\alpha}$$

The set of elements $k \in A(n,p)$ such that $p > k^{\alpha}$ we denote $C_1(n,p)$. The number of elements in the set $C_1(n,p)$ we denote $C_2(n,p)$. Clearly $C_1(n,p) \subset A(n,p)$.

Let $\pi(x)$ be the prime counting function. We need the following Tchebychev's inequality (see, for example, [2])

$$\pi(x) < c \frac{x}{\log x},\tag{6}$$

where c is a positive constant.

2 Main result

Theorem 2.1 Let $0 < \alpha < 1$. We have the following asymptotic formula

$$L_{\alpha}(n) = (1 - \rho(\alpha))n + O\left(\frac{n}{\log n}\right). \tag{7}$$

Proof. We have

$$L_{\alpha}(n) = \sum_{2 \le p \le n} \left(\sum_{k \in B_{1}(n,p) \cap C_{1}(n,p)} k^{0} \right) = \sum_{2 \le p \le n^{\alpha}} \left(\sum_{k \in B_{1}(n,p) \cap C_{1}(n,p)} k^{0} \right) + \sum_{n^{\alpha}
(8)$$

Let us consider a prime p fixed such that $n^{\alpha} .$

If $k \in A(n,p)$ then we have $p > n^{\alpha} \ge k^{\alpha}$. That is, $p > k^{\alpha}$. Therefore, $C_1(n,p) = A(n,p)$. Consequently (see (5) and (3))

$$\sum_{n^{\alpha}
$$= \sum_{n^{\alpha}
$$= (1 - \rho(\alpha))n + O\left(\frac{n}{\log n}\right). \tag{9}$$$$$$

Let us consider a prime p fixed such that $2 \le p \le n^{\alpha}$.

Now, let us consider the inequality (where h is a positive integer) $k^{\alpha}=(p.h)^{\alpha}\leq p$. This inequality has the solutions

$$h=1,2,\ldots,\left|p^{\frac{1-\alpha}{\alpha}}\right|.$$

Therefore,

$$C_2(n,p) \le \left\lfloor p^{\frac{1-\alpha}{\alpha}} \right\rfloor \le p^{\frac{1-\alpha}{\alpha}} \le (n^{\alpha})^{\frac{1-\alpha}{\alpha}} = n^{1-\alpha}.$$

That is,

$$C_2(n,p) \le n^{1-\alpha}. (10)$$

Now, we have (see (10) and (6))

$$\sum_{2 \le p \le n^{\alpha}} \left(\sum_{k \in B_1(n,p) \cap C_1(n,p)} k^0 \right) \le \sum_{2 \le p \le n^{\alpha}} \left(\sum_{k \in C_1(n,p)} k^0 \right) = \sum_{2 \le p \le n^{\alpha}} C_2(n,p)$$

$$\le n^{1-\alpha} \sum_{2 \le p \le n^{\alpha}} 1 = n^{1-\alpha} \pi(n^{\alpha}) \le n^{1-\alpha} c \frac{n^{\alpha}}{\alpha \log n} = \frac{c}{\alpha} \frac{n}{\log n}.$$

That is

$$\sum_{2 \le p \le n^{\alpha}} \left(\sum_{k \in B_1(n,p) \cap C_1(n,p)} k^0 \right) = O\left(\frac{n}{\log n}\right). \tag{11}$$

Equations (8), (9) and (11) give (7). The theorem is proved.

If $\alpha = 1/2$ then $\rho(1/2) = 1 - \log 2$ (see [3]). In this case, equation (7) becomes the Kemeny's equation (1).

Acknowledgements

The author is very grateful to Universidad Nacional de Luján.

References

- [1] Kemeny, J. Largest prime factor, J. Pure Appl. Algebra, Vol. 89, 1993, 181–186.
- [2] LeVeque, W. J. Topics in Number Theory, Addison-Wesley, 1958.
- [3] Ramaswami, R. On the number of positive integers less than x and free of prime divisors greater than x^c , Bull. Amer. Math. Soc., Vol. 55, 1949, 1122–1127.