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1 Introduction

The Bernoulli numbers Bn, n ∈ W are a sequence of rational numbers with many interesting
arithmetic properties. They are defined by the following generating function [5, p. 525].

t

et − 1
=
∞∑
k=0

Bn
tn

n!
, |t| < 2π. (1.1)

The appearances of Bernoulli numbers throughout mathematics are abundant and include find-
ing a formula for the sum of powers of the first n positive integers, values of L-functions and
Euler-Macluarin summation formulae [3]. There exists many recursion and explicit formulae for
Bernoulli numbers. The explicit formula in terms of Stirling numbers of second kind given in [5,
p. 461] is as follows

Bk =
k∑

m=1

(−1)m m!

m+ 1
S(k)
m . (1.2)

Where S(k)
m striling number of second kind. Also, double series representaion given in [5, p. 537]

is as follows

Bm =
m∑
k=0

k∑
v=0

(−1)v
(
k

v

)
vm

k + 1
. (1.3)
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In the present study, similar identities for Bernoulli numbers as shown in (1.2) and (1.3) are
derived through Stirling numbers of second kind and double series in different form. Further,
some rational approximations to powers of π are given in terms of Bernoulli numbers.

2 Some lemmas and remarks

Lemma 2.1. Let n ∈ W and Bn denotes nth Bernoulli number. If

T (x) =

(
x

1− ex

)[(
1− ex

x
+ 1

)n+1

− 1

]
, (2.1)

then

T (n)(0) = Bn. (2.2)

Where T (n)(x) = dnT (x)
dxn .

Proof. It is well known that

1− ex

x
+ 1 = −

∞∑
k=2

xk−1

k!
. (2.3)

Differentiating (2.1) n times and using Leibniz rule, then

DnT (x) =
n∑

m=0

(
n

m

)
Dm

(
x

1− ex

)
Dn−m

[(
1− ex

x
+ 1

)n+1

− 1

]
. (2.4)

Where Dn = dn

dxn . Using (1.1) and (2.3) in (2.4), then setting x = 0 and after simplification,
completes the Lemma.

Lemma 2.2. Let n ∈ W and Bn(t) denotes nth degree Bernoulli polynomial. If

U(t, x) = etxT (x), (2.5)

then

U (n)(t, 0) = Bn(t). (2.6)

Where U (n)(x, t) = dnU(x,t)
dxn .

Proof. Given that

U(t, x) = etxT (x).
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Differentiating n times and using Leibnitz rule, then

dn

dxn
U(t, x) =

n∑
k=0

(
n

k

)
tketx

dn−k

dxn−k
T (x).

Putting x = 0, gives

U (n)(t, 0) =
n∑

k=0

(
n

k

)
tkT (n−k)(0).

Lemma (2.1) shows that T (n−k)(0) = Bn−k, then gives

U (n)(t, 0) =
n∑

k=0

(
n

k

)
Bn−kt

k. (2.7)

It is well known that [3, p. 231]

Bn(t) =
n∑

k=0

(
n

k

)
Bn−kt

k. (2.8)

Using (2.8) in (2.7) gives (2.6).

Remark 2.3. Let m, r ∈ W and S(m)
m+r is Stirling number of second kind [2, p. 1037]. Then

Dr

(
ex − 1

x

)m∣∣∣∣
x=0

=
m!r!

(m+ r)!
S
(m)
m+r. (2.9)

Remark 2.4. Let m,n ∈ W and B(−n)
m (t) is Bernoulli polynomials of degree m of order −n [4].

Then

Dr

(
ex − 1

x

)m

ext
∣∣∣∣
x=0

= B(−n)
r (t). (2.10)

Where Dr = dr

dxr .

3 Main Results

Theorem 3.1. Let S(n)
m be Stirling number of second kind. Then

Bn = n!
n−1∑
k=0

(−1)n−k
(
n+ 1

k

)
(n− k)!
(2n− k)!

S
(n−k)
2n−k . (3.1)

Proof. From equation (2.1), that

T (x) =

(
x

1− ex

)[(
1− ex

x
+ 1

)n+1

− 1

]
.
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After simplification, it gives

T (x) =
n∑

k=0

(−1)n−k
(
n+ 1

k

)(
1− ex

x

)n−k

. (3.2)

Differentiating (3.2) n times with respect to x and putting x = 0 and then using Remark 2.3,
yields

T (n)(0) = n!
n∑

k=0

(
n+ 1

k

)
(n− k)!
(2n− k)!

S
(n−k)
2n−k .

Using Lemma 2.1 and after simplification, gives (3.1). This completes the theorem.

Example 3.2. Let n = 1, 2, 3, 4 in (3.1). Then the first four Bernoulli numbers can be expressed
through Stirling numbers of second kind as follows

B1 = −
1

2
S
(1)
2 .

B2 =
1

6
S
(2)
4 − S

(1)
3 .

B3 = −
1

20
S
(3)
6 +

2

5
S
(2)
5 −

3

2
S
(1)
4 .

B4 =
1

70
S
(4)
8 −

1

7
S
(3)
7 +

2

3
S
(2)
6 − 2S

(1)
5 .

Theorem 3.3. Let n ∈ W . Then

Bn = n!
n−1∑
k=0

n−k∑
r=0

(−1)2n−2k−r
(
n+ 1

k

)(
n− k
r

)
r2n−k

(2n− k)!
. (3.3)

Proof. Let us consider the identity given in Theorem 3.1

Bn = n!
n−1∑
k=0

(−1)n−k
(
n+ 1

k

)
(n− k)!
(2n− k)!

S
(n−k)
2n−k .

Using explicit formula for Stirling number of second kind [2, p.1031], then

Bn = n!
n−1∑
k=0

(−1)n−k
(
n+ 1

k

)
(n− k)!
(2n− k)!

1

(n− k)!

n−k∑
r=0

(−1)n−k−r
(
n− k
r

)
r2n−k.

After simplification, it gives

Bn = n!
n−1∑
k=0

n−k∑
r=0

(−1)2n−2k−r
(
n+ 1

k

)(
n− k
r

)
r2n−k

(2n− k)!
.

This completes theorem.
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Theorem 3.4. Let B(−n)
m (t) be the mth degree Bernoulli polynomial of order −n. Then

Bn(t) =
n∑

k=0

(
n+ 1

k

)
B

(k−n)
k (t). (3.4)

Proof. Let us consider the identity (2.5)

U(t, x) =

(
xext

1− ex

)[(
1− ex

x
+ 1

)n+1

− 1

]
.

After simplification, it gives

U(t, x) =
n∑

k=0

(−1)n−k
(
n+ 1

k

)(
1− ex

x

)n−k

ext.

Differentiating above equation n times with respect to x

DnU(t, x) =
n∑

k=0

(−1)n−k
(
n+ 1

k

)
Dn

(
1− ex

x

)n−k

ext.

Putting x = 0 and then using Remark 2.4, yields

Bn(t) =
n∑

k=0

(
n+ 1

k

)
B

(k−n)
k (t).

This completes the theorem.

4 Some approximations to powers of π

The simplest rational appromiations to π are 22
7

and 355
113

correction up to two and six decimal
places respectively. But, the powers of 22/7 and 355/113 does not converge to two and six
decimals. For instance

π4 − (22/7)4 = π4 − 234256

2401
= 0.15692.

and

π8 − (355/113)8 = π8 − 15882300625

163047361
= 0.00645.

In this section, some rational approximations to powers of π are given in terms of Bernoulli
numbers.

Theorem 4.1. Let p1, p2, . . . , pn are first m prime numbers and n ∈ N .

2(2π)2n ≈ 2.2n!

|B2n|
1

P (2n)
+

4n!

2n!

|B2n|
|B4n|

1

Q(2n)
. (4.1)
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where

P (n) =
m∏
k=1

(
1− 1

pnk

)
(4.2)

Q(n) =
m∏
k=1

(
1 +

1

pnk

)
(4.3)

Proof. It is well known that from Ref [2, p. 1031]

∏
p

(
1− 1

p2n

)
= (−1)n−1 2.2n!

(2π)2n
1

B2n

. (4.4)

It can be written as follows

∞∏
k=m+1

(
1− 1

p2nk

)
= (−1)n−1 2.2n!

(2π)2n
1

B2n

1

P (2n)
. (4.5)

Similarly,

∞∏
k=m+1

(
1 +

1

p2nk

)
= (−1)n−14n!

2n!

1

(2π)2n
B2n

B4n

1

Q(2n)
. (4.6)

Using (4.5) and (4.6), gives

2 ≈ 2.2n!

(2π)2n
1

|B2n|
1

P (2n)
+

4n!

2n!

1

(2π)2n
|B2n|
|B4n|

1

Q(2n)
. (4.7)

After simplification, it completes the theorem.

Example 4.2. The following are some rational approximations to powers of π.

1. Let n = 2 and m = 2 in (4.1). Then

π4 =
1656

17
and π4 =

339471

3485

gives correction up to 2 and 4 decimals respectively.

2. Let n = 3 and m = 2 in (4.1). Then

π6 =
664320

691
and π6 =

4413077316

4590313

gives correction up to 4 and 6 decimals respectively.

3. Similarly, for n = 4 and m = 1

π8 =
149944152960

15802673

gives correction up 5 decimals.
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