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1 Introduction

The study of Diophantine equations and to find their solutions would continue to puzzle both
mathematicians and amateurs alike. In a series of papers [4, 5, 6, 7] Jena has used the Method
of Infinite Ascent to find infinite number of co-prime integral solutions for the parameters of
different Diophantine equations. To apply this method to any Diophantine problem, we need to
discover the appropriate algebraic identity linked with the Diophantine equation under consider-
ation. At present, there seems to be no simple way to find these algebraic identities. The integral
co-prime solutions of the Diophantine equations as given in (1) are yet to be studied for all pos-
itive integral values of n. Of course, for n = 1, these equations have been thoroughly studied
by Beuker [1], who gives a complete list of parametric solutions of the Diophantine equation
A3 + B3 = C2. In a paper [8] Kraus studied the Diophantine equation a3 + b3 = cp to show
the impossibility of primitive integral solutions for a , b and c for 17 ≤ p ≤ 10000, where p is a
prime number. Bruin [2, 3] solved this equation for p = 4 and 5. But, in this paper, we study the
two families of Diophantine equations of (1) relating to all positive integral values of n. Let us
consider the following Diophantine equations

A3 ± nB2 = C3 (1)

1Thankful to my parents - my heavenly mother and revered father, for allowing me to dream!
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2 The Diophantine equations A3 ± nB2 = C3

Theorem 1 and Theorem 2 suggest that each of the two Diophantine equations of (1) has infinite
number of co-prime integral solutions for (A ,B ,C) for any positive integer n. But, before we
proceed further, let us state and prove the following Lemmas which would be used in proving
these theorems.

Lemma 1. For any two positive integers p and q,

(3p2 + 6pq − q2)2 + (3p2 + 6pq − q2)(3p2 − 6pq − q2)

+ (3p2 − 6pq − q2)2 = 3(3p2 + q2)2 (2)

Proof. Expanding the three constituent terms in the LHS of (2), we get

(3p2 + 6pq − q2)2

= (3p2)2 + (6pq)2 + (−q2)2 + 2(3p2)(6pq) + 2(6pq)(−q2) + 2(−q2)(3p2)
= 9p4 + 36p2q2 + q4 + 36p3q − 12pq3 − 6p2q2

= 9p4 + 36p3q + (36− 6)p2q2 − 12pq3 + q4

= 9p4 + 36p3q + 30p2q2 − 12pq3 + q4 (3)

(3p2+ 6pq − q2)(3p2 − 6pq − q2)

= 3p2(3p2 − 6pq − q2) + 6pq(3p2 − 6pq − q2)− q2(3p2 − 6pq − q2)

= 9p4 − 18p3q − 3p2q2 + 18p3q − 36p2q2 − 6pq3 − 3p2q2 + 6pq3 + q4

= 9p4 + (−18 + 18)p3q + (−3− 36− 3)p2q2 + (−6 + 6)pq3 + q4

= 9p4 − 42p2q2 + q4 (4)

(3p2 − 6pq − q2)2

= (3p2)2 + (−6pq)2 + (−q2)2 + 2(3p2)(−6pq) + 2(−6pq)(−q2) + 2(−q2)(3p2)
= 9p4 + 36p2q2 + q4 − 36p3q + 12pq3 − 6p2q2

= 9p4 − 36p3q + (36− 6)p2q2 + 12pq3 + q4 (5)

= 9p4 − 36p3q + 30p2q2 + 12pq3 + q4

L. H. S. of (2) [From (3), (4) and (5)]

= (3p2 + 6pq − q2)2 + (3p2 + 6pq − q2)(3p2 − 6pq − q2) + (3p2 − 6pq − q2)2

= (9p4 + 36p3q + 30p2q2 − 12pq3 + q4) + (9p4 − 42p2q2 + q4)

+ (9p4 − 36p3q + 30p2q2 + 12pq3 + q4)

= (9 + 9 + 9)p4 + (36− 36)p3q + (30− 42 + 30)p2q2

+ (−12 + 12)pq3 + (1 + 1 + 1)q4

= 27p4 + 18p2q2 + 3q4 = 3(9p4 + 6p2q2 + q4) = 3{(3p2)2 + 2.(3p2)(q2) + (q2)2}
= 3(3p2 + q2)2 = R. H. S. of (2).

Hence, Lemma 1 is proved.
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Lemma 2. For any two positive integers p and q,

(3p2 − 6pq − q2)3 + 36pq(3p2 + q2)2 = (3p2 + 6pq − q2)3 (6)

Proof. Now, (3p2 + 6pq − q2)3 − (3p2 − 6pq − q2)3

= {(3p2 + 6pq − q2)− (3p2 − 6pq − q2)}×
{(3p2 + 6pq − q2)2 + (3p2 + 6pq − q2)(3p2 − 6pq − q2) + (3p2 − 6pq − q2)2}

= {(3p2 + 6pq − q2 − 3p2 + 6pq + q2)} · {3(3p2 + q2)2} [From (2)]

= 12pq · 3(3p2 + q2)2 = 36pq(3p2 + q2)2

So , (3p2 + 6pq − q2)3 − (3p2 − 6pq − q2)3 = 36pq(3p2 + q2)2

=⇒ (3p2 + 6pq − q2)3 = (3p2 − 6pq − q2)3 + 36pq(3p2 + q2)2

=⇒ (3p2 − 6pq − q2)3 + 36pq(3p2 + q2)2 = (3p2 + 6pq − q2)3.

Hence, Lemma 2 is proved.

Lemma 3. For any two positive integers p and q,

(3p2 + 6pq − q2)3 − 36pq(3p2 + q2)2 = (3p2 − 6pq − q2)3

Proof. From (6) we get,

(3p2 + 6pq − q2)3 = (3p2 − 6pq − q2)3 + 36pq(3p2 + q2)2

=⇒ (3p2 + 6pq − q2)3 − 36pq(3p2 + q2)2 = (3p2 − 6pq − q2)3

Hence, Lemma 3 is proved.

Theorem 1. For any positive integer n , the Diophantine equation A3 + nB2 = C3 has infinitely
many co-prime integral solutions for

(A ,B ,C) = {(m4 − 6m2n− 3n2) , 6m(m4 + 3n2) , (m4 + 6m2n− 3n2)}

where m 6= 0 and can take any integral value not divisible by 3 so that m , n are co-prime and
one is odd, the other is even.

Proof. We will prove Theorem 1 in two steps.

Step I. According to the statement of the Theorem 1, if

A3 + nB2 = C3, (7)

then, we have to establish that

(m4 − 6m2n− 3n2)3 + n{6m(m4 + 3n2)}2 = (m4 + 6m2n− 3n2)3 (8)
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Now, in (6), substitute p = m2 and q = 3n

Hence,
(3m4 − 6m2.3n− 9n2)3 + 36m2.3n(3m4 + 9n2)2 = (3m4 + 6m2.3n− 9n2)3

=⇒ 33(m4 − 6m2n− 3n2)3 + 36m2 · 33n(m4 + 3n2)2 = 33(m4 + 6m2n− 3n2)3

=⇒ (m4 − 6m2n− 3n2)3 + 36m2n(m4 + 3n2)2 = (m4 + 6m2n− 3n2)3

=⇒ (m4 − 6m2n− 3n2)3 + n{6m(m4 + 3n2)}2 = (m4 + 6m2n− 3n2)3

which establishes (8). Alternatively, in (6), substitute p = n and q = m2 , and with a little
manipulation we can get the algebraic identity as given by (8).

Step II. We have to show that the given integral solutions of (7) for (A ,B ,C) to be pair-wise
co-prime.
Now. A = (m4 − 6m2n − 3n2) , which would be odd, because m and n are of opposite parity.
B = 6m(m4 + 3n2) and it is always even; and C = (m4 + 6m2n − 3n2) , which would be odd,
because m and n are of opposite parity. Since, 3 is not a factor of m , both A and C are not
divisible by 3. Again, (m4 − 3n2) which is odd, and 6m2n will not have a common factor k > 1.
So, A and C would be co-prime because, A is the difference, and C is the sum of two co-prime
terms (m4− 3n2) and 6m2n . Knowing that A and C are co-prime, from equation (7) we see that
(A ,B ,C) would be pair-wise co-prime.

Thus, combing Step I and Step II, Theorem 1 is completely established.

Theorem 2. For any positive integer n , the Diophantine equation A3 − nB2 = C3 has infinitely
many co-prime integral solutions for

(A ,B ,C) = {(m4 + 6m2n− 3n2) , 6m(m4 + 3n2) , (m4 − 6m2n− 3n2)}

where m 6= 0 and can take any integral value not divisible by 3 so that m , n are co-prime and
one is odd, the other is even.

Proof. If we change n to −n in Theorem 1, the statement of Theorem 2 follows. So, in proving
this Theorem, we have to follow the arguments of proof in Theorem 1 after replacing n with
−n.

3 Comments

The present paper is not an attempt to find the complete set of parametric solutions to the two
families of Diophantine equations (1). Hence, there is a scope of further research on these equa-
tions.
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