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Abstract: We study two-term Egyptian fraction representations of a given rational number. We
consider the case of m/n where each prime factor p of n satisfies p ≡ ±1 (mod m): necessary
and sufficient conditions for the existence of proper two-term Egyptian fraction expressions of
such m/n are given, together with methods to find these representations. Furthermore, we deter-
mine the number of proper two-term Egyptian fraction expressions for 1/m, 2/m, 3/m, 4/m and
6/m.
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1 Introduction

Egyptian fractions were used by Egyptian mathematicians some 4000 years ago to represent
rational numbers. A unit fraction is a fraction of the form 1/n where n > 2. An Egyptian
fraction is an expression that is a sum of unit fractions

m

n
=

1

n1

+
1

n2

+ · · ·+ 1

nk
(1)

where 0 < m/n < 1 and k > 1. We say that the Egyptian fraction (1) is proper if its unit fractions
are distinct. Thus the expression 2/3 = 1/3+1/3 is improper, whereas, 2/3 = 1/2+1/6 is proper.
Egyptian fractions are awkward for arithmetical calculations; however, such representations has
led to intriguing questions in number theory, see Guy [3].

We first dispense with two immediate questions, that of existence and uniqueness. Indeed,
every rational number admits a proper Egyptian fraction representation, and secondly, every ra-
tional number has infinitely many proper representations. For the proof of existence we present
Fibonacci’s algorithm for producing proper Egyptian fractions.
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Theorem 1. Let 0 < m/n < 1. Then there is a proper Egyptian fraction

m

n
=

1

n1

+
1

n2

+ · · ·+ 1

nk

where k > 1 and 2 6 n1 < n2 < · · · < nk. Moreover, there are infinitely many proper Egyptian
fractions for m/n.

Proof. We use induction on m. The result it true when m = 1. Now assume that m > 1 and that
the hypothesis is true for all 0 < M/N < 1 with M < m. We subtract the largest possible unit
fraction from m/n. Namely, there is a unique n1 > 2 such that

1

n1

<
m

n
<

1

n1 − 1
. (2)

Indeed n1 is the smallest integer greater than or equal to n/m. Write M/N = m/n − 1/n1 =

(mn1 − n)/nn1, whence 0 < M/N < 1. The second inequality in (2) shows that mn1 − n < m,
hence M < m. By the induction hypothesis there is a proper Egyptian fraction

M

N
=

1

n2

+ · · ·+ 1

nk

where k > 2 and 2 6 n2 < · · · < nk. It remains to show that n1 < n2. For a contradiction,
suppose that n1 > n2. It follows that

1

n1 − 1
>
m

n
=
M

N
+

1

n1

>
1

n2

+
1

n1

>
2

n1

which implies that n1 < 2, contradicting n1 > 2. This completes the induction.
Next, repeated applications of the equality

1

n
=

1

n+ 1
+

1

n(n+ 1)
,

for instance

1

3
=

1

4
+

1

12
=

1

4
+

1

13
+

1

12 · 13
= . . . ,

shows that each unit fraction has infinitely many proper representations, and this implies that any
m/n has infinitely many proper representations.

Example 1. To apply Fibonacci’s algorithm for 4/5 we first find the largest unit fraction smaller
than 4/5; one method is to increase the denominator until it just becomes a multiple of the nu-
merator, obtaining 4/8 = 1/2. Applying this to 4/5 and then to 3/10 we obtain

4

5
=

1

2
+

3

10
=

1

2
+

1

4
+

1

20
.
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However we note the alternative expression

4

5
=

1

2
+

1

5
+

1

10
.

We do not know the methods used by the Egyptians for producing their fractions. However it
seems that they preferred fractions with small denominators. Thus we may ask, given m/n and
Egyptian fractions (1) for m/n,

(I) what is the length k of a shortest Egyptian fraction for m/n, and the number of representa-
tions of shortest length,

(II) what is the representation for which the last denominator nk is a minimum.

Question (I) is to specify conditions (C) on m, n, and determine the smallest k such that all
rationals m/n satisfying conditions (C) possess an Egyptian fraction representation of length k.
It is known that the minimum number of terms to express any 2/n as an Egyptian fraction is two,
and the minimum number of terms for any 3/n is two or three, according as n ≡ 2 or 1 (mod 3)

respectively. However for the fraction m/n, where m > 4, the minimal length of a shortest
Egyptian fraction is still unknown. Among the unknown cases, the Erdős-Straus conjecture states
that 4/n can be expressed as an Egyptian fraction with at most three unit fractions.

Existing studies of minimal length Egyptian fractions form/n focus on the minimum number
k of terms, but not on how many such Egyptian fractions there are, nor on how to find them all,
which are in fact very important aspects of Egyptian fractions.

In this paper we focus on two-term Egyptian fractions, that is, the Diophantine equation 1/x+

1/y = m/n, splitting a rational m/n into two unit fractions. We first state formulae for obtaining
all two-term expansions for m/n in Theorems 3 and 4. The number of two-term expansions of
1/n and for 2/n are given in Theorems 6 and 7. These results set the stage for the main result of
this paper: namely, in Theorem 12, we give the number of two-term Egyptian fractions for m/n,
under certain conditions on m, n, and we outline methods for finding all such Egyptian fractions.
The result is then applied to rationals 3/n, 4/n and 6/n.

2 The equation 1/x + 1/y = m/n

A given m/n may not admit a two-term Egyptian fraction. In this section we give a constructive
method for finding all two-term Egyptian fractions for a given m/n, or else determining that no
such expansions exist. That is, we wish to determine all positive integer solutions x, y to the
equation 1/x+1/y = m/n, given 1 6 m 6 n and gcd(m,n) = 1. The results in this section are
scattered in the literature. However, since the main theorems in Section 3 depend on these results,
for convenience we give the proofs.

Denote by τ(n) the number of positive divisors of n, where n > 1. Then τ(1) = 1, and
if n = pr11 p

r2
2 · · · p

rk
k is the prime factorization of n, then τ(n) = (r1 + 1)(r2 + 1) · · · (rk + 1).

Moreover, τ is multiplicative, that is, τ(mn) = τ(m)τ(n) whenever gcd(m,n) = 1.
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Theorem 2. Let n > 1 be given. Consider the equation

1/x+ 1/y = 1/n.

If (x, y) is a positive solution then there exist positive integers f1, f2 such that f1f2 = n2 and
x = n+ f1, y = n+ f2.

Conversely, if f1, f2 are positive integers such that f1f2 = n2 then x = n+ f1, y = n+ f2 is
a positive solution.

Hence the number of positive solution pairs (x, y) to the equation is equal to τ(n2).

Proof. Suppose that (x, y) is a positive solution. Then x > n, y > n and

y =
nx

x− n
= n+

n2

x− n
.

Hence (x−n)(y−n) = n2. Put f1 = x−n, and f2 = y−n. Then f1, f2 are positive, f1f2 = n2,
and x = n+ f1, y = n+ f2.

Conversely, let f1, f2 be positive and satisfy f1f2 = n2. It is easy to check that x = n + f1,
y = n+ f2 is a positive solution to the given equation.

Thus the map f 7→ (n + f, n + n2/f) is a bijection from the set of positive divisors of n2 to
the set of positive solutions (x, y).

The next result can be found in Bartoš [1].

Theorem 3. Given m/n, with 1 6 m 6 n and gcd(m,n) = 1. Consider the equation

1/x+ 1/y = m/n.

If (x, y) is a positive solution of the equation then there are positive integers f1, f2 such that
f1f2 = n2, m | gcd(n+ f1, n+ f2) and x = (n+ f1)/m, y = (n+ f2)/m.

Conversely, if there exist positive integers f1, f2 such that f1f2 = n2, and m divides both
n+ f1 and n+ f2, then x = (n+ f1)/m, y = (n+ f2)/m is a positive solution of the equation.

Proof. If (x, y) is a positive solution to 1/x + 1/y = m/n, then 1/xm + 1/ym = 1/n. By
Theorem 2, there are positive f1 and f2 with f1f2 = n2, such that (xm, ym) = (n + f1, n + f2).
As m divides both n+ f1 and n+ f2, then m | gcd(n+ f1, n+ f2). Moreover, (x, y) is equal to
((n+ f1)/m, (n+ f2)/m).

Conversely, suppose f1 and f2 are positive, f1f2 = n2 and m | gcd(n + f1, n + f2). By
Theorem 2, 1/(n+ f1) + 1/(n+ f2) = 1/n. Hence

1

(n+ f1)/m
+

1

(n+ f2)/m
=
m

n
.

That is, ((n+ f1)/m, (n+ f2)/m) is a positive solution to the equation.

The proof includes a method for finding all two-term expansions of a given m/n, or deter-
mining that there are none. The method is based on finding all factorizations n2 = f1f2.
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Example 2. Find all two-term expansions for 4/25.
Expansions are obtained from x = (25 + f1)/4, y = (25 + f2)/4 where f1f2 = 252.

f1 f2 25 + f1 25 + f2 x, y

1 625 26 650 −
5 125 30 150 −
25 25 50 50 −

We see that there are no two-term Egyptian fractions for 4/25.

Example 3. Find all two-term expansions for 3/10.
Expansions are obtained from x = (10 + f1)/3, y = (10 + f2)/3 where f1f2 = 102.

f1 f2 10 + f1 10 + f2 x, y

1 100 10 110 −
2 50 12 60 4, 20

4 25 14 35 −
5 20 15 30 5, 10

10 10 20 20 −

Hence there are two two-term Egyptian fractions for 3/10, namely

3

10
=

[
1

4
+

1

20

]
=

[
1

5
+

1

10

]
.

The following result can be found in Rav [4]. The result is a slight restatement of Theorem 3.

Theorem 4. Given a fractionm/n, with 1 6 m 6 n and gcd(m,n) = 1. Then (x, y) is a positive
solution to the equation 1/x+1/y = m/n if and only if there exist positive integers d1 and d2 such
that d1 |n, d2 |n, gcd(d1, d2) = 1, m | (d1 + d2), and x = n(d1 + d2)/d1m, y = n(d1 + d2)/d2m.

Proof. If (x, y) is a positive solution to the equation 1/x+ 1/y = m/n then by Theorem 3,

(x, y) = ((n+ f1)/m, (n+ f2)/m)

for some f1, f2 with f1f2 = n2. Hence

1

n

(
1 +

f1
n

)
/m

+
1

n

(
1 +

f2
n

)
/m

=
m

n
.

Reduce f1/n to the lowest terms d2/d1. Since (f1/n)(f2/n) = f1f2/n
2 = 1, we see that

f2/n = d1/d2, in lowest terms. In particular, d1 |n and d2 |n. Moreover

m

n
=

1

n

(
1 +

d2
d1

)
m

+
1

n

(
1 +

d1
d2

)
m

=
1

n (d1 + d2)

d1m

+
1

n (d1 + d2)

d2m

.
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Since the denominators in the fractions on the right hand side of the above equation are positive
integers, and gcd(m,n) = 1, we conclude that m | (d1 + d2).

The converse is easy.

According to Theorem 4, to find the solutions to the equation 1/x+1/y = m/n, we just need
to find all the ordered pairs of coprime factors (d1, d2) of n, and then for each pair check whether
m | (d1 + d2). Note that (1, 1) is a pair of coprime factors of n. Whenever m | (d1 + d2), then
((n/d1)((d1 + d2)/m), (n/d2)((d1 + d2)/m)) is a solution to the equation.

Example 4. Reconsider the equation 1/x+1/y = 4/25 given in Example 2. The positive factors
of 25 are 1, 5, and 25. The ordered pairs of coprime factors are (d1, d2) = (1, 1), (1, 5), (5, 1), (1,
25), and (25, 1). The values of the sums are d1 + d2 = 2, 6, and 26, none of which are divisible
by 4. Therefore the equation does not have positive solutions.

Example 5. Find all two-term expansions for 3/10.

These are given from x = 10
d1

d1+d2
3

, y = 10
d2

d1+d2
3

where d1 |10, d2 |10, (d1, d2) = 1, and
3 | (d1 + d2).

d1 d2 d1 + d2 x, y

1 1 1 −
1 2 3 10, 5

1 5 6 20, 4

1 10 11 −
2 5 7 −

The results agree with Example 3.
Considering that m = 1 divides every sum of coprime factors of n, we get a relation between

the number of positive factors of n2 and the number of pairs of coprime factors of n.

Theorem 5. The number of positive factors of n2 is equal to the number of ordered pairs of
positive coprime factors of n.

3 Proper two-term Egyptian fractions

In order to count the number of two-term Egyptian fractions, we will not distinguish 1/a +

1/b from 1/b + 1/a. Identical unit fractions are also excluded from consideration. In view of
Theorem 2, we have

Theorem 6. The number of proper two-term Egyptian fractions for the unit fraction 1/n is
1
2
(τ(n2)− 1).

Now consider two-term Egyptian fractions for 2/n where gcd(2, n) = 1. When n is odd, all
the factors of n are odd, therefore in view of Theorems 3 and 4 we obtain:

Theorem 7. There are 1
2
(τ(n2)− 1) proper two-term Egyptian fractions for the fraction 2/n,

where n > 2 and gcd(2, n) = 1.
In addition, all proper two-term Egyptian fractions can be obtained by either one of the fol-

lowing formulae:
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(i)
2

n
=

1
1
2
(n+ f1)

+
1

1
2
(n+ f2)

where f1, f2 > 0, f1f2 = n2 and f1 < f2,

(ii)
2

n
=

1(
n
d1

d1+d2
2

) +
1(

n
d2

d1+d2
2

)
where d1, d2 > 0, d1 |n, d2 |n, d1 < d2, and gcd(d1, d2) = 1.

Example 6. Find all proper two-term Egyptian fractions for 2/15.

There are four proper two-term expansions.
Method I: We obtain the expansions from x = 1

2
(15+f1), y = 1

2
(15+f2) where f1f2 = 32 ·52.

f1 f2 x y

1 225 8 120

3 75 9 45

5 45 10 30

9 25 12 20

Method II: We obtain the expansions from x =
n

d1

d1 + d2
2

, y =
n

d2

d1 + d2
2

, where d1 | 15,

d2 | 15, and (d1, d2) = 1.
d1 d2 x y

1 3 30 10

1 5 45 9

3 5 20 12

1 15 120 8

Both methods result in

2

15
=

[
1

9
+

1

45

]
=

[
1

8
+

1

120

]
=

[
1

10
+

1

30

]
=

[
1

12
+

1

20

]
.

The next is a simple consequence of Theorem 7.

Theorem 8. Every rational 2/n, where 2 < n and gcd(2, n) = 1, admits a proper two-term
Egyptian fraction.

Moreover, 2/n admits a unique proper two-term Egyptian fraction if and only if n = p is an
odd prime. Namely

2

p
=

2

p+ 1
+

2

p(p+ 1)
.

Remark 1. In the Rhind Mathematical Papyrus Table [2], the Egyptians gave an Egyptian fraction
for each of 2/n, where n is odd and n 6 101. When n is a multiple of 3 or 5, except n = 95,
a two-term Egyptian fraction was given. When n is a prime number, except n = 3, 5, 7, 11 and
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23, the Egyptian fraction stated had either three or four terms. We do not know whether ancient
Egyptians pursued two-term expressions for 2/n. However, we are able to provide two-term
expressions for those cases mentioned above where two-term expressions were not in the table,
for completeness.

When n = 3, 5, 7, 11 and 23, there is only one proper two-term expression for 2/n, namely,
2/n = 2/(n+ 1) + 2/(n+ n2).

When n = 95, there are (τ(952)− 1)/2 = 4 proper two-term Egyptian fractions for 2/n =

2/95. With either method introduced in Theorem 7, we get 2/95 = [1/48 + 1/4560] = [1/50 +

1/950] = [1/57 + 1/285] = [1/60 + 1/228].

When m 6= 2 then m/n may not admit two-term expansions. Necessary and sufficient con-
ditions for existence of two-term expansions will be given in the special case when the prime
factors of n are congruent to ±1 (mod m).

Theorem 9. Let 2 < m < n, gcd(m,n) = 1. Suppose that each prime factor of n is congruent
to either 1 or −1 (mod m). Then m/n has a proper two-term Egyptian fraction if and only if n
has a prime factor congruent to −1 (mod m).

Proof. By hypothesis, if p is a prime divisor of n then p ≡ ±1 (mod m). Hence

n ≡ ±1 (mod m).

Consider the case that n has a prime factor d1 ≡ −1 (mod m). Let d2 = 1. Then gcd(d1, d2) = 1

and m | (d1 + d2). By Theorem 4, m/n has a two-term Egyptian fraction, and it is proper since
d1 6= d2.

Conversely, if m/n has a two-term Egyptian fraction, then by Theorem 3, the two denomi-
nators are equal to (n + f1)/m and (n + f2)/m respectively, where f1f2 = n2 and both n + f1
and n + f2 are multiples of m, whence f1 ≡ −n (mod m). If n ≡ −1 (mod m) then n has a
prime factor congruent to −1 (mod m). On the other hand if n ≡ 1 (mod m) then f1 ≡ −1
(mod m). But the factors of f1 are factors of n, therefore f1, and hence n also, has a prime factor
congruent to −1 (mod m).

When m = 3, 4 or 6, and 2 < m < n with gcd(m,n) = 1, then any prime divisor of n is
necessarily congruent to ±1 (mod m). Hence we obtain results for proper fractions 3/n, 4/n,
6/n in lowest terms:

Theorem 10. (i) The fraction 3/n has a proper two-term Egyptian fraction if and only if n has
a prime factor congruent to 2 (mod 3).

(ii) The fraction 4/n has a proper two-term Egyptian fraction if and only if n has a prime factor
congruent to 3 (mod 4).

(iii) The fraction 6/n has a proper two-term Egyptian fraction if and only if n has a prime factor
congruent to 5 (mod 6).

Remark 2. (i) When all the prime factors of n are congruent to 1 (mod 3) then it is known that
3/n has a three term expansion.
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(ii) When all the prime factors of n are congruent to 1 (mod 4) then it is conjectured that 4/n
has a three term expansion [Erdős–Straus].

(iii) When all the prime factors of n are congruent to 1 (mod 6) then it is open what is a
minimal-length expansion of 6/n.

We next obtain formulae for the number of proper two-term Egyptian fractions for m/n, and
also a method for obtaining these expansions.
Notation. We define κ(1) = 0 and if d =

∏k
j=1 q

rj
j , a prime-power factorization, then κ(d) =∑k

j=1 rj . We define O(n) = |{d : d |n, κ(d) is odd}|, which is the number of factors of n
containing an odd number of prime factors, and E(n) = |{d : d |n, κ(d) is even}|, which is the
number of factors of n containing an even number of prime factors.

Lemma 11. Let n =
∏k

j=1 q
2sj
j where k > 1, sj > 1, and qj are distinct primes. Then

(i) O(n) = (τ(n)− 1)/2.

(ii) E(n) = (τ(n) + 1)/2.

Proof. We prove (i) and (ii) simultaneously by induction on k. First, τ(q2s) = 2s+1. The factors
of q2s are q0, q1, . . . , q2s. It is easy to see that formulae are true when k = 1.

Now suppose formulae are true for a fixed k > 1, and let n =
∏k+1

j=1 q
2sj
j = a · b where

a =
∏k

j=1 q
2sj
j , b = q

2sk+1

k+1 . The formulae for O(a), E(a) are given by induction hypothesis, and
for O(b), E(b) given by the case k = 1. Since gcd(a, b) = 1, then τ(ab) = τ(a)τ(b). We have

O(n) = O(a)E(b) + E(a)O(b)

=
(τ(a)− 1)

2

(τ(b) + 1)

2
+

(τ(a) + 1)

2

(τ(b)− 1)

2

=
τ(a)τ(b)− 1

2
=
τ(ab)− 1

2
=
τ(n)− 1

2
.

Then E(n) = τ(n)−O(n) = (τ(n) + 1)/2.

Theorem 12. Suppose m/n, 2 < m < n and gcd(m,n) = 1, is a fraction such that all the prime
factors of n are congruent to either 1 or −1 (mod m). Let p be the product of the prime factors
of n congruent to 1, and q the product of the prime factors congruent to −1. The empty product
is defined to be 1.

(i) If n ≡ 1 (mod m), then the number of proper two-term Egyptian fractions of m/n is equal
to τ(p2)(τ(q2)− 1)/4.

When q = 1 then this number is zero. If q 6= 1, to get a two-term Egyptian fraction, factor
n2 as prime powers and write n2 = f1f2, such that f1 and f2 both contain an odd number
of n2’s prime factors that are congruent to −1 (mod m).

(ii) If n ≡ −1 (mod m), then the number of proper two-term Egyptian fractions of m/n is
equal to τ(p2)(τ(q2) + 1)/4.
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To get a two-term Egyptian fraction, factor n2 as prime powers and write n2 = f1f2,
such that f1 and f2 both contain an even number of n2’s factors that are congruent to
−1 (mod m).

In both cases,
m

n
=

1

(n+ f1)/m
+

1

(n+ f2)/m

is a proper two-term Egyptian fraction.

Proof. By hypothesis we may write

n =
k∏
i=1

prii

l∏
j=1

q
sj
j = p · q

where k, l > 0, ri > 1, sj > 1, pi, qj prime, pi ≡ 1, qj ≡ −1 (mod m), and the empty product
is defined to be 1. Put p =

∏k
i=1 p

ri
i , q =

∏l
j=1 q

sj
j .

Define σ = 0 if l = 0, and σ = s1 + · · · + sl if l > 0. We see that n ≡ (−1)σ (mod m). By
Theorem 9, m/n has a proper two term expansion if and only if σ > 0.

Case (i): Suppose n ≡ 1 (mod m). Then σ is even. If σ = 0, then m/n does not have a
proper two-term Egyptian fraction. The number τ(p2)(τ(q2) − 1)/4 = τ(p2)(τ(1) − 1)/4 = 0,
and the statement is true. Now suppose σ > 2 (and even), so that m/n has a proper two-term
Egyptian fraction, and also q 6= 1. Consider the equation 1/x+ 1/y = m/n.
By Theorem 3, the positive integer solutions are given by ((n + f1)/m, (n + f2)/m), where
f1, f2 > 0, f1f2 = n2 =

∏k
i=1 p

2ri
i

∏l
j=1 q

2sj
j and n+ fi ≡ 0 (mod m) (i = 1, 2), with fi ≡ −1,

since n ≡ 1. Hence we may write f1 =
∏

i p
αi
i

∏
j q

βj
j where 0 6 αi 6 2ri and 0 6 βj 6 2sj

(all i, all j), and
∑

j βj odd. Since f1f2 = n2, we deduce that f2 =
∏

i p
2ri−αi
i

∏
j q

2sj−βj
j , where∑

j (2sj − βj) is odd. Now q2 has τ(q2) = (2s1+1) · · · (2sl+1) factors. Among these factors of
q2, using Lemma 11, there are (τ(q2) − 1)/2 factors containing an odd number of prime factors
qj . The number (τ(q2)− 1)/2 is non-zero. Thus the number of possible f1 is τ(p2)(τ(q2)− 1)/2.
If (f1, f2) generates a solution then also does (f2, f1). Notice that f1 and f2 can never be equal,
since otherwise f1 = f2 = pq ≡ 1 (mod m), a contradiction. Omitting duplications, we get that
m/n has τ(p2)(τ(q2)− 1)/4 proper two-term Egyptian fractions.

Case (ii): Suppose n ≡ −1 (mod m). Then σ is odd. By Theorem 9 the fraction m/n has a
proper two-term Egyptian fraction. Consider the equation 1/x+ 1/y = m/n.
By Theorem 3, every positive integer solution can be expressed as

(
(n + f1)/m, (n + f2)/m

)
,

where f1f2 = n2 =
∏k

i=1 p
2ri
i

∏l
j=1 q

2sj
j , and both f1, f2 ≡ −n ≡ 1 (mod m). Hence we may

write f1 =
∏

i p
αi
i

∏
j q

βj
j where 0 6 αi 6 2ri and 0 6 βj 6 2sj , and

∑
βj even. Given f1,

then f2 =
∏

i p
2ri−αi
i

∏
j q

2sj−βj
j , and

∑
j (2sj − βj) is even. Among the factors of q2, using

Lemma 11, there are (τ(q2) + 1)/2 factors containing an even number of prime factors. The
number (τ(q2) + 1)/2 is non-zero. Hence f1 has τ(p2)(τ(q2) + 1)/2 candidates. If (f1, f2) gives
a solution then also does (f2, f1). Notice that f1 and f2 can never be equal, since otherwise
f1 = f2 = pq ≡ −1 (mod m), a contradiction. Omitting duplications, we get that m/n has
τ(p2)(τ(q2) + 1)/4 proper two-term Egyptian fractions.
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Notice that, given m/n with 2 < m < n and gcd(m,n) = 1, the hypothesis of Theorem 12
that each prime factor of n is congruent to ±1 (mod m) is satisfied when m = 3, 4, or 6.

Example 7. Find all proper two-term expansions for 3/245.
Apply Theorem 12. Note n = 5 · 72. Since q = 5, p = 49, and 245 ≡ −1 (mod 3), we

use Theorem 12 (ii). The number of proper two-term expansions is τ(74)(τ(52) + 1)/4 = 5.
Moreover they can be obtained from x = (245 + f1)/3, y = (245 + f2)/3 where f1 = 50k,
f2 = 52l and kl = 74.

f1 f2 x y

1 52.74 82 20090

7 52.73 84 2940

72 52.72 98 490

73 52.7 196 140

74 52 882 90

Hence

3

245
=

[
1

82
+

1

20090

]
=

[
1

84
+

1

2940

]
=

[
1

98
+

1

490

]
=

[
1

140
+

1

196

]
=

[
1

90
+

1

882

]
.

Example 8. Find all proper two-term expansions for 4/245.
We find n = 5 · 72, p = 5, q = 72, n ≡ 1 (mod 4). By Theorem 12 (i), the number of proper

two-term expansions is τ(52)(τ(74) − 1)/4 = 3. There are obtained from x = (245 + f1)/4,
y = (245 + f2)/4 where f1 = 71k, f2 = 73l and kl = 52.

f1 f2 x y

7 . 1 73 . 52 63 2205

7 . 5 73 . 5 70 490

7 . 52 73 . 1 105 147

Hence 4

245
=

[
1

63
+

1

2205

]
=

[
1

70
+

1

490

]
=

[
1

105
+

1

147

]
.
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