Short remark on Möbius function

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering – Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

To Lilija

Abstract: Some representations of Möbius function μ are introduced, and illustrated with an example.

Keywords: Arithmetic function, μ , ω and Ω . **AMS Classification:** 11A25.

The well known Möbius function is defined for the natural number $n \ge 2$, with canonical representation

$$n = \prod_{i=1}^k p_i^{\alpha_i}$$

(where $k, \alpha_1, \dots, \alpha_k \ge 1$ – natural numbers and p_1, \dots, p_k – different prime numbers), by (e.g, [1,2]):

$$\mu(n) = \begin{cases} 0, & \text{if } n \text{ is not a square-free} \\ (-1)^k, & \text{if } n = p_1 \dots p_k \end{cases}$$

and $\mu(1) = 1$.

Some representations of this function are given below.

Let for the above canonical form of n

$$\underline{set}(n) = \{p_1, ..., p_k\},\$$
$$\underline{mult}(n) = \prod_{i=1}^k p_i,\$$
$$\omega(n) = k,\$$
$$\Omega(n) = \sum_{i=1}^k \alpha_i,\$$

$$\tau(n) = \prod_{i=1}^{k} (\alpha_i + 1),$$

 $sum_m(n) = \sum_{i=1}^k p_i^m$, where $m \ge 1$ is a natural number,

$$\zeta(n) = \sum_{i=1}^{k} \alpha_i p_i,$$

$$\overline{sg}(x) = \begin{cases} 0, & \text{if } x > 0\\ 1, & \text{if } x \le 0 \end{cases},$$

where x is a real number.

The following assertion is valid.

Theorem. For every natural number $n \ge 2$

(a)
$$\mu(n) = (-1)^{\omega(n)} \left[\frac{2^{\omega(n)}}{\tau(n)} \right]$$

(b) $= (-1)^{\omega(n)} \overline{sg}(2^{\omega(n)} - \tau(n))$
(c) $= (-1)^{\omega(n)} \left[\frac{mult(n)}{n} \right]$
(d) $= (-1)^{\omega(n)} \overline{sg}(\underline{mult}(n) - n)$
(e) $= (-1)^{\omega(n)} \left[\frac{\omega(n)}{\Omega(n)} \right]$
(f) $= (-1)^{\omega(n)} \overline{sg}(\omega(n) - \Omega(n))$
(g) $= (-1)^{\omega(n)} \left[\frac{sum_1(n)}{\zeta(n)} \right].$

Proof. Let the natural number n be square free. Therefore, for all $i \ (1 \le i \le k), \alpha_i = 1$ and hence

$$2^{\omega(n)} = \tau(n),$$

$$\underline{mult}(n) = n,$$

$$\omega(n) = \Omega(n),$$

$$sum_1(n) = \zeta(n).$$

Therefore,

$$\begin{bmatrix} \frac{2^{\omega(n)}}{\tau(n)} \end{bmatrix} = \overline{sg}(2^{\omega(n)} - \tau(n)) = \begin{bmatrix} \underline{mult}(n) \\ n \end{bmatrix}$$
$$= \overline{sg}(\underline{mult}(n) - n) = \begin{bmatrix} \frac{\omega(n)}{\Omega(n)} \end{bmatrix} = \overline{sg}(\omega(n) - \Omega(n)) = \begin{bmatrix} \underline{sum}_1(n) \\ \zeta(n) \end{bmatrix} = 1.$$

If n has odd number of prime divisors, $(-1)^{\omega(n)} = -1$ and if n has even number of prime divisors, $(-1)^{\omega(n)} = 1$. Therefore, each of the right sides of the seven formulas is a representation of μ .

Let the natural number n be not square free. Therefore, at least for one i $(1 \le i \le k)$, $\alpha_i \ge 2$ and hence

$$2^{\omega(n)} < \tau(n),$$

$$\underline{mult}(n) < n,$$

$$\omega(n) < \Omega(n),$$

$$sum_1(n) < \zeta(n).$$

Therefore,

and obviously, in all these cases $\mu(n) = 0$. Therefore, again each one of the right sides of the six formulas is a representation of μ .

It is valid the following

Lemma. For every natural number $k \ge 1$:

$$(-1)^k = 4\left[\frac{k}{2}\right] - 2k + 1.$$

Proof. Let k = 2m + 1. Then,

$$(-1)^k = (-1)^{2m+1} = -1 = 4m - 2(2m+1) + 1 = 4\left[\frac{k}{2}\right] - 2k + 1.$$

Let k = 2m. Then,

$$(-1)^k = (-1)^{2m} = 1 = 4m - 2.(2m) + 1 = 4\left[\frac{k}{2}\right] - 2k + 1.$$

Therefore, formulas (a)–(g) from the above Theorem can be written in the forms

(a)
$$\mu(n) = \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \left[\frac{2^{\omega(n)}}{\tau(n)}\right]$$

(b) $= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \overline{\operatorname{sg}}(2^{\omega(n)} - \tau(n))$
(c) $= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \left[\frac{\operatorname{mult}(n)}{n}\right]$
(d) $= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \overline{\operatorname{sg}}(\operatorname{mult}(n) - n)$
(e) $= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \left[\frac{\omega(n)}{\Omega(n)}\right]$
(f) $= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \overline{\operatorname{sg}}(\omega(n) - \Omega(n)).$

(g)
$$= \left(4\left[\frac{\omega(n)}{2}\right] - 2n + 1\right) \cdot \left[\frac{sum_1(n)}{\zeta(n)}\right].$$

It is well known that for every two real numbers x and y, $|x.y| = |x| \cdot |y|$. Now, as illustration of the above representations, we prove that for every two natural numbers x and y

$$|\mu(x).\mu(y)| \ge |\mu(x.y)|.$$
 (1)

Really, if x or y is not square-free, then

$$\begin{aligned} |\mu(x).\mu(y)| &= \left| (-1)^{\omega(x)+\omega(y)} \cdot \left[\frac{mult(x)}{x} \right] \cdot \left[\frac{mult(y)}{y} \right] \right| = \left| \left[\frac{mult(x)}{x} \right] \cdot \left[\frac{mult(y)}{y} \right] \right| = 0 \\ &= \left| \left[\frac{mult(x.y)}{x.y} \right] \right| = \left| (-1)^{\omega(x.y)} \cdot \left[\frac{mult(x.y)}{x.y} \right] \right| = |\mu(x.y)|, \end{aligned}$$

because x or y has at least one prime divisor p that has an order higher than 1, while p appears in $\underline{mult}(x)$ or $\underline{mult}(y)$, and in $\underline{mult}(x.y)$ only once. Therefore, in this case (1) is valid.

If x and y are both square-free, then

$$|\mu(x).\mu(y)| = \left| (-1)^{\omega(x)+\omega(y)} \cdot \left[\frac{\underline{mult}(x)}{x} \right] \cdot \left[\frac{\underline{mult}(y)}{y} \right] \right| = \left| \left[\frac{\underline{mult}(x)}{x} \right] \cdot \left[\frac{\underline{mult}(y)}{y} \right] \right| = 1$$

$$\begin{cases} = \left| \left[\frac{\underline{mult}(x.y)}{x.y} \right] \right| = \left| (-1)^{\omega(x.y)} \cdot \left[\frac{\underline{mult}(x.y)}{x.y} \right] \right| = |\mu(x.y)|, & \text{if } \underline{set}(x) \cap \underline{set}(y) = \emptyset \\ > 0 = \left| \left[\frac{\underline{mult}(x.y)}{x.y} \right] \right| = \left| (-1)^{\omega(x.y)} \cdot \left[\frac{\underline{mult}(x.y)}{x.y} \right] \right| = |\mu(x.y)|, & \text{if } \underline{set}(x) \cap \underline{set}(y) \neq \emptyset \end{cases}$$

Therefore, (1) is also valid.

Similar illustrations can be given with the other representations of μ .

References

- [1] Mitrinovic, D., J. Sándor, *Handbook of Number Theory*, Kluwer Academic Publishers, 1996.
- [2] Nagell, T., Introduction to Number Theory, John Wiley & Sons, New York, 1950.