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The well known Möbius function is defined for the natural number n ≥ 2, with canonical repre-
sentation

n =
k∏
i=1

pαi
i

(where k, α1, ... αk ≥ 1 – natural numbers and p1, ..., pk – different prime numbers), by (e.g,
[1, 2]):

µ(n) =

{
0, if n is not a square-free
(−1)k, if n = p1 ... pk

and µ(1) = 1.

Some representations of this function are given below.
Let for the above canonical form of n

set(n) = {p1, ..., pk},

mult(n) =
k∏
i=1

pi,

ω(n) = k,

Ω(n) =
k∑
i=1

αi,
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τ(n) =
k∏
i=1

(αi + 1),

summ(n) =
k∑
i=1

pmi , where m ≥ 1 is a natural number,

ζ(n) =
k∑
i=1

αipi,

sg(x) =

{
0, if x > 0

1, if x ≤ 0
,

where x is a real number.
The following assertion is valid.

Theorem. For every natural number n ≥ 2

(a) µ(n) = (−1)ω(n)
[

2ω(n)

τ(n)

]
(b) = (−1)ω(n)sg(2ω(n) − τ(n))

(c) = (−1)ω(n)
[
mult(n)

n

]
(d) = (−1)ω(n)sg(mult(n)− n)

(e) = (−1)ω(n)
[
ω(n)

Ω(n)

]
(f) = (−1)ω(n)sg(ω(n)− Ω(n))

(g) = (−1)ω(n)
[
sum1(n)

ζ(n)

]
.

Proof. Let the natural number n be square free. Therefore, for all i (1 ≤ i ≤ k), αi = 1 and
hence

2ω(n) = τ(n),

mult(n) = n,

ω(n) = Ω(n),

sum1(n) = ζ(n).

Therefore, [
2ω(n)

τ(n)

]
= sg(2ω(n) − τ(n)) =

[
mult(n)

n

]

= sg(mult(n)− n) =

[
ω(n)

Ω(n)

]
= sg(ω(n)− Ω(n)) =

[
sum1(n)

ζ(n)

]
= 1.

If n has odd number of prime divisors, (−1)ω(n) = −1 and if n has even number of prime
divisors, (−1)ω(n) = 1. Therefore, each of the right sides of the seven formulas is a representation
of µ.
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Let the natural number n be not square free. Therefore, at least for one i (1 ≤ i ≤ k), αi ≥ 2

and hence
2ω(n) < τ(n),

mult(n) < n,

ω(n) < Ω(n),

sum1(n) < ζ(n).

Therefore, [
2ω(n)

τ(n)

]
= sg(2ω(n) − τ(n)) =

[
mult(n)

n

]
= sg(mult(n)− n) =

[
ω(n)

Ω(n)

]
= sg(ω(n)− Ω(n)) =

[
sum1(n)

ζ(n)

]
= 0

and obviously, in all these cases µ(n) = 0. Therefore, again each one of the right sides of the six
formulas is a representation of µ.

It is valid the following
Lemma. For every natural number k ≥ 1:

(−1)k = 4

[
k

2

]
− 2k + 1.

Proof. Let k = 2m+ 1. Then,

(−1)k = (−1)2m+1 = −1 = 4m− 2(2m+ 1) + 1 = 4

[
k

2

]
− 2k + 1.

Let k = 2m. Then,

(−1)k = (−1)2m = 1 = 4m− 2.(2m) + 1 = 4

[
k

2

]
− 2k + 1.

Therefore, formulas (a)–(g) from the above Theorem can be written in the forms

(a) µ(n) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.

[
2ω(n)

τ(n)

]

(b) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.sg(2ω(n) − τ(n))

(c) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.

[
mult(n)

n

]
(d) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.sg(mult(n)− n)

(e) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.

[
ω(n)

Ω(n)

]
(f) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.sg(ω(n)− Ω(n)).

28



(g) =

(
4

[
ω(n)

2

]
− 2n+ 1

)
.

[
sum1(n)

ζ(n)

]
.

It is well known that for every two real numbers x and y, |x.y| = |x|.|y|. Now, as illustration
of the above representations, we prove that for every two natural numbers x and y

|µ(x).µ(y)| ≥ |µ(x.y)|. (1)

Really, if x or y is not square-free, then

|µ(x).µ(y)| =
∣∣∣∣(−1)ω(x)+ω(y).

[
mult(x)

x

]
.

[
mult(y)

y

]∣∣∣∣ =

∣∣∣∣[mult(x)

x

]
.

[
mult(y)

y

]∣∣∣∣ = 0

=

∣∣∣∣[mult(x.y)

x.y

]∣∣∣∣ =

∣∣∣∣(−1)ω(x.y).

[
mult(x.y)

x.y

]∣∣∣∣ = |µ(x.y)|,

because x or y has at least one prime divisor p that has an order higher than 1, while p appears in
mult(x) or mult(y), and in mult(x.y) only once. Therefore, in this case (1) is valid.

If x and y are both square-free, then

|µ(x).µ(y)| =
∣∣∣∣(−1)ω(x)+ω(y).

[
mult(x)

x

]
.

[
mult(y)

y

]∣∣∣∣ =

∣∣∣∣[mult(x)

x

]
.

[
mult(y)

y

]∣∣∣∣ = 1


=

∣∣∣∣[mult(x.y)

x.y

]∣∣∣∣ =

∣∣∣∣(−1)ω(x.y).

[
mult(x.y)

x.y

]∣∣∣∣ = |µ(x.y)|, if set(x) ∩ set(y) = ∅

> 0 =

∣∣∣∣[mult(x.y)

x.y

]∣∣∣∣ =

∣∣∣∣(−1)ω(x.y).

[
mult(x.y)

x.y

]∣∣∣∣ = |µ(x.y)|, if set(x) ∩ set(y) 6= ∅

.

Therefore, (1) is also valid.
Similar illustrations can be given with the other representations of µ.
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