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To my colleague and friend Prof. Tony Shannon
for his 75th birthday!

During the last century, a lot of extensions and modifications of the Fibonacci sequence were
introduced. My friend Tony Shannon and I defined some of them (see, e.g., our book [1]). Here,
continuing this direction of research related to Fibonacci sequences, a new type of Fibonacci–like
sequence is introduced.

Let a and b be two fixed real numbers. Let us construct the following two sequences

α0 = a, β0 = b,

α2k+1 = β2k+1 = α2k + β2k,

α2k+2 = α2k+1 + β2k,

β2k+2 = β2k+1 + α2k,

for the natural numner k ≥ 0. This pair of sequences we call a Pulsating Fibonacci sequence.
The first values of the two sequences are given in the following Table 1.
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Table 1.

k αk αk = βk βk

0 a b

1 a+ b

2 a+ 2b 2a+ b

3 3a+ 3b

4 5a+ 4b 4a+ 5b

5 9a+ 9b

6 13a+ 14b 14a+ 13b

7 27a+ 27b

8 41a+ 40b 40a+ 41b

9 81a+ 81b

10 121a+ 122b 122a+ 121b

11 243a+ 243b
...

...
...

...

Theorem. For every natural number k ≥ 0,

α2k+1 = β2k+1 = 3ka+ 3kb, (1)

α4k =
32k + 1

2
a+

32k − 1

2
b, (2)

β4k =
32k − 1

2
a+

32k + 1

2
b, (3)

α4k+2 =
32k+1 − 1

2
a+

32k+1 + 1

2
b, (4)

β4k+2 =
32k+1 + 1

2
a+

32k+1 − 1

2
b. (5)

Proof. Obviously, for k = 0 the assertion is valid. Let us assume that for some natural number
k ≥ 0, (1)–(5) are valid. For the natural number k + 1, first, we check that

α4k+1 = β4k+1 = α4k + β4k =
32k + 1

2
a+

32k − 1

2
b+

32k − 1

2
a+

32k + 1

2
b

=
32k + 1 + 32k − 1

2
a+

32k − 1 + 32k + 1

2
b = 32ka+ 32kb.

Second, we check that

α4k+1 = α4k + β4k−1 =
32k + 1

2
a+

32k − 1

2
b+ 32ka+ 32kb

=
32k + 1 + 2.32k

2
a+

32k − 1 + 2.32k

2
b =

32k+1 + 1

2
a+

32k+1 − 1

2
b.
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All other eqalities are checked analogously.
For example, if b = −a, then the Pulsating Fibonacci sequence has the form:

k αk αk = βk βk

0 a −a
1 0

2 −a a

3 0

4 a −a
...

...
...

...

while, if b = a, then the Pulsating Fibonacci sequence has the form:

k αk αk = βk βk

0 a a

1 2a

2 3a 3a

3 6a

4 9a 9a
...

...
...

...
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