Notes on Number Theory and Discrete Mathematics Vol. 19, 2013, No. 3, 12–14

Pulsating Fibonacci sequence

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria e-mail: krat@bas.bg

Abstract: A new type Fibonacci sequence is introduced and explicit formulas for the form of its membres is formulated and proved.

Keywords: Fibonacci sequence.

AMS Classification: 11B39.

To my colleague and friend Prof. Tony Shannon for his 75th birthday!

During the last century, a lot of extensions and modifications of the Fibonacci sequence were introduced. My friend Tony Shannon and I defined some of them (see, e.g., our book [1]). Here, continuing this direction of research related to Fibonacci sequences, a new type of Fibonacci–like sequence is introduced.

Let a and b be two fixed real numbers. Let us construct the following two sequences

$$\alpha_{0} = a, \ \beta_{0} = b,$$

$$\alpha_{2k+1} = \beta_{2k+1} = \alpha_{2k} + \beta_{2k},$$

$$\alpha_{2k+2} = \alpha_{2k+1} + \beta_{2k},$$

$$\beta_{2k+2} = \beta_{2k+1} + \alpha_{2k},$$

for the natural number $k \ge 0$. This pair of sequences we call a Pulsating Fibonacci sequence.

The first values of the two sequences are given in the following Table 1.

k	$lpha_k$	$\alpha_k = \beta_k$	$eta_{m k}$
0	a		b
1		a + b	
2	a+2b		2a+b
3		3a + 3b	
4	5a + 4b		4a + 5b
5		9a + 9b	
6	13a + 14b		14a + 13b
7		27a + 27b	
8	41a + 40b		40a + 41b
9		81a + 81b	
10	121a + 122b		122a + 121b
11		243a + 243b	
÷	:	:	÷

Table 1.

Theorem. For every natural number $k \ge 0$,

$$\alpha_{2k+1} = \beta_{2k+1} = 3^k a + 3^k b, \tag{1}$$

$$\alpha_{4k} = \frac{3^{2k} + 1}{2}a + \frac{3^{2k} - 1}{2}b,\tag{2}$$

$$\beta_{4k} = \frac{3^{2k} - 1}{2}a + \frac{3^{2k} + 1}{2}b,\tag{3}$$

$$\alpha_{4k+2} = \frac{3^{2k+1} - 1}{2}a + \frac{3^{2k+1} + 1}{2}b,\tag{4}$$

$$\beta_{4k+2} = \frac{3^{2k+1}+1}{2}a + \frac{3^{2k+1}-1}{2}b.$$
(5)

Proof. Obviously, for k = 0 the assertion is valid. Let us assume that for some natural number $k \ge 0$, (1)–(5) are valid. For the natural number k + 1, first, we check that

$$\alpha_{4k+1} = \beta_{4k+1} = \alpha_{4k} + \beta_{4k} = \frac{3^{2k} + 1}{2}a + \frac{3^{2k} - 1}{2}b + \frac{3^{2k} - 1}{2}a + \frac{3^{2k} + 1}{2}b$$
$$= \frac{3^{2k} + 1 + 3^{2k} - 1}{2}a + \frac{3^{2k} - 1 + 3^{2k} + 1}{2}b = 3^{2k}a + 3^{2k}b.$$

Second, we check that

$$\alpha_{4k+1} = \alpha_{4k} + \beta_{4k-1} = \frac{3^{2k} + 1}{2}a + \frac{3^{2k} - 1}{2}b + 3^{2k}a + 3^{2k}b$$
$$= \frac{3^{2k} + 1 + 2 \cdot 3^{2k}}{2}a + \frac{3^{2k} - 1 + 2 \cdot 3^{2k}}{2}b = \frac{3^{2k+1} + 1}{2}a + \frac{3^{2k+1} - 1}{2}b.$$

All other equities are checked analogously.

For example, if b = -a, then the Pulsating Fibonacci sequence has the form:

k	α_k	$\alpha_k = \beta_k$	β_k
0	a		-a
1		0	
2	-a		a
3		0	
4	a		-a
÷	:	:	÷

while, if b = a, then the Pulsating Fibonacci sequence has the form:

k	α_k	$\alpha_k = \beta_k$	β_k
0	a		a
1		2a	
$\frac{2}{3}$	3a		3a
3		6a	
4	9a		9a
÷		:	÷

References

[1] Atanassov K., V. Atanassova, A. Shannon, J. Turner, *New Visual Perspectives on Fibonacci Numbers*. World Scientific, New Jersey, 2002.