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1 Introduction

In [3], Rabago introduced the concept of circulant determinant sequence with binomial coeffi-
cients. In particular, the right-circulant determinant sequence with binomial coefficients, denoted
by {Rn}, is defined as a sequence of the form

{Rn} =

|1|,
1 1

1 1
,

1 2 1

1 1 2

2 1 1

,

1 3 3 1

1 1 3 3

3 1 1 3

3 3 1 1

, . . .

 .

Furthermore, in [1], the formula for the n-th term of the sequence Rn, as well as the sum of the
first n terms, denoted by RSn, has been shown by the author and is given by

Rn =
(
1 + (−1)n−1

)
2n−2

and

RSn =
4b

n+1
2 c − 1

3
.

As we recall, the n-th Jacobsthal and Jacobsthal-Lucas numbers (n ≥ 0) are defined by

Jn =
2n − (−1)n

3
(1)
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and
jn = 2n + (−1)n, (2)

respectively. Now, if we take the sum of the first n-term of the sequence {Rn} with odd indices
(or simply the first (2n− 1) terms of the sequence) we will obtain

RS2n−1 =
4n − 1

3
.

Fortunately, the product of the first n Jacobsthal numbers and Jacobsthal-Lucas numbers is given
by the same formula. Hence, we obtain the following result.

Theorem 1.1. Let Jn, jn and RSn be the n-th Jacobsthal number, the n Jacobsthal-Lucas
number, and the sum of the first n terms of the circulant determinant sequence with binomial
coefficients with odd indices then,

Jnjn = RS2n−1.

On the otherhand, Atanassov [1] provide a generalization of (1) by the following formula

Js
n =

sn − (−1)n

s+ 1
, (3)

where n ≥ 0 is a natural number and s ≥ 0 is a real number. He also introduced another
generalization of (1) in [2] and is given by

Y s
n =

sn − (−1)n

s2 − 1
, (4)

where s 6= 1 is a real number. He then obtained the following interesting results.

Theorem 1.2. For every natural number n ≥ 0 and real number s 6= 1:

Y s
n =

1

s− 1
Js
n, Y

s
n+2 = Y s

n + sn, Y s
n+1 = sY s

n +
(−1)n

s− 1
.

As an analogue to these results, Shang [4] formulated some modifications of the Jacobsthal-
Lucas numbers. More precisely, he consider the following modification of (2):

jsn = sn + (−1)n, (5)

where n is a natural number and s ≥ 0 is a real number. He then further extend his modification
to the following form

js,tn = sn + (−t)n, (6)

where n is a natural number, s and t are arbitrary real numbers. Inspired by these results, we
present some relations involving Jacobsthal numbers, Jacobsthal-Lucas numbers, and their re-
spective generalization and modification.
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2 Main results

We begin by defining Js
−n and js−n.

For every n ∈ N, we let
Js
−n = (−1)n+1Js

n (7)

and
js−n = (−1)n+1jsn. (8)

Throughout the following discussion we let Cn
k =

(
n

k

)
.

Theorem 2.1. For n, l ∈ N and real number s ≥ 0, s 6= 1,

n∑
k=0

Cn
k j

sl

2k = (js2l)
n + 2n. (9)

In particular, for l = 1, we have
∑n

k=0 C
n
k j

s2

2k = (js2)
n + 2n.

Proof. Note that (s2l + 1)n =
∑n

k=0C
n
k (s

2l)k and since
∑n

k=0C
n
k = 2n then

(js2l)
n =

n∑
k=0

Cn
k

(
(sl)2k + 1

)
− 2n =

n∑
k=0

Cn
k j

sl

2k − 2n.

We may remark that in terms of (6), we can express (9) as jj
s
2l,−2

n .

Theorem 2.2. For n, l ∈ N and real number s ≥ 0, s 6= 1,

n∑
k=0

Cn
k j

s2

k = js
2+1

n − (−1)n.

More generally, we have,
n∑

k=0

Cn
k j

s2l

k = js
2l+1

n − (−1)n.

Proof. Because (s2l + 1)n =
∑n

k=0C
n
k (s

2l)k +
∑n

k=0C
n
k (−1)k, then

(s2l + 1)n =
n∑

k=0

Cn
k j

s2l

k

Hence,

js
2l+1

n =
n∑

k=0

Cn
k j

s2l

k + (−1)n

Thus, conclusion follows.

Theorem 2.3. For all natural number n and real number s ≥ 0, s 6= 1,
n∑

k=0

Cn
k j

s−1
k = sn.
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Proof. We use the fact that
∑n

k=0C
n
k (−1)k = 0. Since sn = (s− 1 + 1)n then

(s− 1 + 1)n =
n∑

k=0

Cn
k (s− 1)k +

n∑
k=0

Cn
k (−1)k

=
n∑

k=0

Cn
k

(
(s− 1)k + (−1)k

)
=

n∑
k=0

Cn
k j

s−1
k .

Thus, conclusion follows.

By incorporating Theorem 1.2 to the previous theorem we obtain the following corollaries.

Corollary 2.4. For all natural number n and real number s ≥ 0, s 6= 1,

Y s
n+2 − Y s

n =
n∑

k=0

Cn
k j

s−1
k .

Corollary 2.5. For all natural number n and real number s ≥ 0, s 6= 1,

Js
n+2 − Js

n = (s− 1)
n∑

k=0

Cn
k j

s−1
k .

In particular, for s = 2, Jn+2 − Jn =
∑n

k=0 C
n
k j

1
k = 2n.

Using the identities in Theorem 2.2 and Theorem 2.3 we will obtain the following theorem.

Theorem 2.6. For all natural number n and real number s ≥ 0, s 6= 1,

Js
n =

1

s+ 1

[
n∑

k=0

Cn
k

(
js

2l

k + js−1
k

)
− js

2l+1
n

]
= (s− 1)Y s

n .

If we let s = 2 we’ll obtain the following special case of the above theorem.

Corollary 2.7.

Jn =
1

3

[
n∑

k=0

Cn
k

(
j4

l

k + j1k

)
− j4

l+1
n

]
.

Theorem 2.6 can also be shown using the fact that
∑n

k=0 C
n
k j

s2l

k = (s2l + 1)n.

Theorem 2.8. For all natural number n and real number s ≥ 0, s 6= 1,

Jn =
1

3

[
n∑

k=0

Ck
n

(
js

2l

k + js
l

2k

)
−
(
js

2l+1
n + (js2l)

n
)]

.

Theorem 2.9. For all natural number n and real number s ≥ 0, s 6= 1,

jn =
n∑

k=0

Ck
n

(
js

l

2k − js
2l

k

)
+
(
js

2l+1
n − (js2l)

n
)
.
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For the proof of Theorem 2.8 and Theorem 2.9 we may use Theorem 2.1 and 2.2.

Theorem 2.10. For all natural number n and real number s ≥ 0, s 6= 1,

n∑
m=0

m∑
k=0

Cn
k j

s−1
k =

sn+1 − 1

s− 1
.

Proof. Use Theorem 2.3.

Theorem 2.11. For all even natural number n,

Jn =
1

3

[(
n∑

k=0

(−1)kCn
k j

s
k

)
− js−1

n

]
,

where Jn is the n-th Jacobsthal number and jsn is the n-th modified Jacobsthal-Lucas number.

Proof. The proof is straightforward. We use the binomial expansion

(x+ y)n =
n∑

k=0

Cn
k x

kyn−k.

We let x = s and y = −1 obtaining

(s− 1)n =
n∑

k=0

(−1)n−kCn
k s

n.

Noting that (−1)n−k = (−1)n+k, we have

(s− 1)n =
n∑

k=0

(−1)n+kCn
k s

k +
n∑

k=0

Cn
k − 2n.

Adding (−1)n both sides we’ll obtain

js−1
n = (s− 1)n + (−1)n =

n∑
k=0

Cn
k ((−1)n+ksk + 1)− (2n − (−1)n),

and since n is even then,

js−1
n =

n∑
k=0

(−1)kCn
k (s

k + (−1)k)− 3Jn.

Thus,

Jn =
1

3

[(
n∑

k=0

(−1)kCn
k j

s
k

)
− js−1

n

]
,

which is the desired result.

A similar result to Theorem 2.11 can be obtain for jn and is stated in the following theorem.
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Theorem 2.12. For all odd natural number n,

jn = js−1
n +

n∑
k=0

(−1)kCn
k j

s
k, (10)

where jn is the n-th Jacobsthal-Lucas number and jsn is the n-th modified Jacobsthal-Lucas num-
ber.

Proof. The proof is similar to the previous theorem. Again we let x = s and y = −1 in the
binomial expansion obtaining

(s− 1)n =
n∑

k=0

(−1)n−kCn
k s

n.

So we have,

(s− 1)n =
n∑

k=0

(−1)n+kCn
k s

k −
n∑

k=0

Cn
k + 2n.

Adding both sides by (−1)n and noting that n is odd we have

js−1
n = −

n∑
k=0

(−1)kCn
k (s

k + (−1)k) + jn,

It follows that,

jn = js−1
n +

n∑
k=0

(−1)kCn
k j

s
n.

This proves the theorem.

We could express (10) using (8) and is given by the following Corollary.

Corollary 2.13. jn = js−1
n −

∑n
k=0C

n
k j

s
−k.
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