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Abstract: We offer an elementary approach to the solution of diophantine equation
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, considered recently in Vol. 19, No. 3 of this journal. An extension is provided, too.
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1 Introduction

In the recent paper [1] the solution of diophantine equation
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(1)

is offered. In the proof, an auxiliary result from paper [2] has been used.
In what follows, we shall point out that, equation can be solved elementary, without the use

of any auxiliary result.

2 The proof

We may assume x ≤ y ≤ z.

As
1

x
<

1

2
, we get x ≥ 3. On the other hand, as
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y
+
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z
≥ 3

z
, by
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2
≥ 3

z
we get z ≥ 6.

Similarly, as
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x
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y
+
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z
≤ 3

x
, we get x ≤ 6. Thus for x the following cases are possible:

x ∈ {3, 4, 5, 6}. This leads to the following four equations:
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x = 4,
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, (3)

x = 5,
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=
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, (4)

x = 6,
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y
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z
=

1

3
. (5)

Remark that equations (2), (3), (5) may be rewritten as

(y − 6)(z − 6) = 36, (2′)

(y − 4)(z − 4) = 16, (3′)

(y − 3)(z − 3) = 9. (5′)

As z ≥ 6 in (2′) and y − 6 ≤ z − 6, for (2′) only the following cases are possible:

y − 6 = 1, z − 6 = 36; y − 6 = 2, z − 6 = 18; y − 6 = 3, z − 6 = 12;

y − 6 = 4, z − 6 = 9; y − 6 = 6, z − 6 = 6

leading to the solutions

(x, y, z) = (3, 7, 42); (3, 8, 24); (3, 9, 18); (3, 10, 15); (3, 12, 12).

In a same manner, equation (3′) leads to

(x, y, z) = (4, 5, 20); (4, 6, 12); (4, 8, 8),

while (5′) to
(x, y, z) = (6, 6, 6).

Equation (4) gives by
1

y
+

1

z
≤ 2

y
that is

3

10
≤ 2

y
, so y ≤ 6. Since y ≥ x = 5, we have two

cases: y = 5 and y = 6. There is solution only for y = 5, giving:

(x, y, z) = (5, 5, 10).

Remark. We should note that in Theorem 2.3 of [1], the set of solutions (x, y, z) with x ≤
y ≤ z is provided. Clearly any permutation of (x, y, z) is a solution, too.

3 An extension

A more general equation than (1) is
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where p, q ≥ 1 are given positive integers.
The above method can be extended in order to prove that equation (6) has a finite number of

solutions, which can be determined in theory.

Indeed, let us suppose again x ≤ y ≤ z. Then
3

z
≤ p

q
≤ 3

x
implies

x ≤ 3q

p
≤ z, (7)

where x >
q

p
, as

1

x
<

p

q
. This shows that the possible values of x lie between

[
q

p

]
+1 and

[
3q

p

]
;

i.e. a finite number of values. Let x = a be such a value. Then from (6) we get
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, (8)

where
p′

q′
=

p

q
=

1

a
. Again, as

p′

q′
≤ 2

y
, we get a ≤ y ≤ 2q′

p′
, so a finite number of values. Finally,

for y = b, with a ≤ b ≤ 2q′

p′
one obtains
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b
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z
=

p′
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, (9)

with possible solutions z = bq′/(p′b − q′), in case if this is an integer. Therefore the number of
values of z is finite, too.
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