b-Parts and finite b-representation of real numbers

M. H. Hooshmand

Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran e-mails: hadi.hooshmand@gmail.com, hooshmand@iaushiraz.ac.ir

Abstract: The b-parts of real numbers and the generalized division algorithm were considered and discussed in [3]. Also some of their algebraic properties have been studied in [4]. In this paper we continue it and introduce a unique finite representation of real numbers to the base of an arbitrary real number $b \neq 0, \pm 1$ (namely finite b-representation), by using them. Finally we prove a necessary and sufficient conditions for the finite b-representation to be digital.

Keywords: *b*-integer part, *b*-decimal part, generalized division algorithm, radix representation and expansion of real numbers, *b*-digital sequence.

AMS Classification: 11A63, 11A67.

1 Preliminaries

For any real number a denote by [a] the largest integer not exceeding a and put (a) = a - [a] (the decimal part of a). Now let b be a nonzero constant real number. For all real numbers a set

$$[a]_b = b[\frac{a}{b}]$$
, $(a)_b = b(\frac{a}{b})$.

We call the notation $[a]_b$ b-integer part of a and $(a)_b$ b-decimal part of a. Also $[a]_b$ and $(a)_b$ are called b-parts of a.

Clearly $a = [a]_b + (a)_b$ where

$$[a]_b \in b\mathbb{Z} = \langle b \rangle, \ \ (a)_b \in \mathbb{R}_b := b[0,1) = \{bd | 0 \le d < 1\}.$$

Since $(a)_1 = (a)$ to prevent any confusion between decimal and parentheses notation, sometimes we use the symbol $(a)_1$ instead of (a).

It is easy to see that the following properties (I)-(IV) hold:

(I) For every $\beta \in b\mathbb{Z}$, we have $[a + \beta]_b = [a]_b + \beta$, $(a + \beta)_b = (a)_b$ so if m, n are integers, then

$$(ma + nc)_b = (m(a)_b + nc)_b = (ma + n(c)_b)_b = (m(a)_b + n(c)_b)_b = ((ma + nc)_b)_b.$$

Therefore the b-decimal and b-integer part functions $(x)_b$ and $[x]_b$ are idempotent, their compositions are zero and $(x)_b$ satisfies the following functional equations

$$f(f(x) + y - f(y)) = f(x)$$
, $f(x + y - f(y)) = f(x)$, $f(x + f(y + z)) = f(f(x + y) + z)$.

Note: One can see the general solution of these functional equations in [5]. In fact the above basic properties have led us to a type of functions on groups.

(II)
$$(a)_b = a \Longleftrightarrow a \in \mathbb{R}_b \Longleftrightarrow [a]_b = 0 , (a)_b = 0 \Longleftrightarrow a \in b\mathbb{Z} \Longleftrightarrow [a]_b = a.$$

(III)
$$|(a)_b| < |b| , |a| - |b| < |[a]_b| , \frac{[a]_b}{\operatorname{sgn}(b)} \le \frac{a}{\operatorname{sgn}(b)} < \frac{[a]_b + b}{\operatorname{sgn}(b)},$$

where sgn is the signum function.

Now applying the above elementary properties we can deduce and state the followings interesting number theoretic explanation of *b*-parts of real numbers.

(**IV**) (Number theoretic explanation of *b*-parts):

For every positive integer b and real a, $[a]_b$ is the same unique integer of the residue class $\{[a]-b+1,\cdots,[a]\}$ (mode b) that is divisible by b (because $b|[a]_b$ and $[a]-b+1 \leq [a]_b \leq [a]$). Also, for the general explanation of $[a]_b$, if b>0, then $[a]_b$ is the largest element of $b\mathbb{Z}$ not exceeding a and if b<0, then $[a]_b$ is the least element of $b\mathbb{Z}$ not less than a.

Now let a , b are positive integers. By the division algorithm we have a=bq+r where q , r are integers and $0 \le r < b$, so

$$(a)_b = (bq + r)_b = (r)_b = r.$$

It means that $(a)_b$ is the same remainder of the division of a by b. It is an important fact that leads us to the generalized division algorithm (for real numbers) and algebraic properties of b-parts.

Theorem 1.0. Suppose $b \neq 0$ be a fixed real number.

(a) (The unique representation of real numbers by b-parts) For every real number a there exist unique numbers a_1 and a_2 such that

$$a = a_1 + a_2$$
, $a_1 \in b\mathbb{Z}$, $a_2 \in \mathbb{R}_b$.

(b) (The generalized division algorithm) For every real number a, there exist a unique integer q

and a unique non negative real number r such that

$$a = bq + r \quad , \quad 0 \le r < |b|.$$

(q and r are called integer quotient and b-bounded remainder of the division of a by b, respectively.)

Proof. See [3] and [4] for two different proofs.

Now applying the above theorem we can here state the general number theoretic explanation of $(a)_b$:

If b > 0, then $(a)_b$ is the same b-bounded remainder of the (generalized) division of a by b, and if b < 0, then $(a)_b$ is the inverse of the remainder of the division of -a by -b (because $(a)_b = -(-a)_{-b}$).

Therefore $a \equiv c \pmod{b}$ if and only if $(a)_b = (c)_b$.

(V) If b is a positive integer, then for every real number a we have

$$([a])_b = [(a)_b] = (a)_b - (a) = (a)_b - ((a)_b) = [a] - [[a]]_b = [a] - [a]_b.$$

Because $a = [a]_b + (a)_b = [[a]]_b + ([a])_b + (a)$ and since $b \in \mathbb{Z}^+$, then $([a])_b \in \mathbb{Z}$ and so $0 \le ([a])_b \le b - 1$ hence $0 \le ([a])_b + (a) < b$ therefore Theorem 1.0(a) (the unique representation of real numbers by b-parts) implies $(a)_b = ([a])_b + (a)$. On the other hand

$$[a] = [[a]]_b + ([a])_b = [[a]_b + (a)_b] = [a]_b + [(a)_b].$$

Now we can deduce the identities.

(VI) For every real numbers a and $b \neq 0$, the set $\{(na)_b | n \in \mathbb{Z}\}$ is finite if and only if $a \in b\mathbb{Q}$ (i.e. $\frac{a}{b}$ is rational number). In addition if $\frac{a}{b}$ is irrational, then the sequence $(na)_b$ is dense in the close interval b[0,1] (= [0,b] or [b,0]).

Because if m and n are two distinct integers, then $(na)_b = (ma)_b$ if and only if $a = \frac{[na]_b - [ma]_b}{n-m}$ (notice that $[na]_b - [ma]_b \in b\mathbb{Z}$). Also if n_0 is a fixed integer and $a = \frac{m}{n_0}b$, then $(n_0a)_b = (ma)_b = 0$ and for every integer k we have

$$(ka)_b = ([k]_{n_0}a + (k)_{n_0}a)_b = ([\frac{k}{n_0}]n_0a + (k)_{n_0}a)_b = ([\frac{k}{n_0}](n_0a)_b + (k)_{n_0}a)_b$$
$$= ((k)_{n_0}a)_b \in \{0, (a)_b, (2a)_b, \cdots, ((n_0 - 1)a)_b\}.$$

In fact we have $\{(na)_b|n\in\mathbb{Z}\}=\{0,(a)_b,(2a)_b,\cdots,((n_0-1)a)_b\}.$

Also the identity $(na)_b = b(n\frac{a}{b})_1$ and the Kronecker's theorem imply the sequence $\{(na)_b\}_{n\geq 1}$ is

dense in the close interval b[0,1], if $\frac{a}{b}$ is irrational.

Remark 1.1 As we can see in [4], in fact the set $\{(na)_b|n\in\mathbb{Z}\}$ is a cyclic subgroup of the b-bounded group $(\mathbb{R}_b,+_b)$ (the least real residues group modulo b, as a generalization of the group $\mathbb{Z}_n=\{0,1,2,\cdots,n-1\}$), where $+_b$ is the b-addition $(x+_by=(x+y)_b,\forall x,y\in\mathbb{R})$. The above property states that a cyclic subgroup of $(b[0,1),+_b)$, generated by a, is dense in b[0,1] if and only if $\frac{a}{b}$ is irrational. Also if $\frac{a}{b}=\frac{m_0}{n_0}$ is a rational number for which $n_0>0$, $\gcd(m_0,n_0)=1$, then the cyclic group < a> is finite and

$$\langle a \rangle = \{0, (a)_b, (2a)_b, \cdots, ((n_0 - 1)a)_b\},\$$

If a and b are integers, then $(a)_b$ is also an integer. Hence this question has been introduced that when is $(a)_b$ an integer?. The answer of this question is important, because first we want to know that if $a, b \in \mathbb{R}$ and b > 0, then when the remainder of the division of a by b is an integer (like the quotient of the division). Secondly we need it (in the next section) to determine that when the finite b-representation of a real number is digital. Before of stating the related lemma notice that:

A necessary condition for $(a)_b$ to be an integer is that $a \in \{1, b \}$ (where $\{1, b \}$ is the real subgroup generated by 1 and b). So if $(a)_b$ is integer, then the real numbers a, b and 1 are linearly dependent on \mathbb{Z} and \mathbb{Q} . The converse is not valid (the conditions are not sufficient), because if $b = \sqrt{2}$ and $a = 2\sqrt{2} + 2$, then $a \in \{1, b \}$ and a, b and 1 are linearly dependent, and $(a)_b = 2 - \sqrt{2}$. But the necessary and sufficient condition for $(a)_b$ to be an integer is that a belongs to a subset of $\{1, b \}$ as following:

$$\{m+kb|k\in\mathbb{Z}, m\in\mathbb{Z}\cap\mathbb{R}_b\},\$$

because in this case

$$(a)_b = (m+kb)_b = (m)_b = b(\frac{m}{b})_1 = b\frac{m}{b} = m.$$

(its converse is clear). Also in general we have the following inferences:

$$a, b \in \mathbb{Q} \Rightarrow (a)_b \in \mathbb{Q}$$
, $a \in \mathbb{Q}^c \& b \in \mathbb{Q} \Rightarrow (a)_b \in \mathbb{Q}^c$
$$a \in \mathbb{Q} \setminus \mathbb{R}_b \& b \in \mathbb{Q}^c \Rightarrow (a)_b \in \mathbb{Q}^c.$$

In the case a and b are irrationals, if the real numbers a, b and b are linearly independent, then a is also irrational.

Now we prove a necessary and sufficient conditions for the remainder of the generalized division of a by b to be integer number.

Lemma 1.2. If $b \neq 0$ is a rational number, then $(a)_b$ is integer if and only if a and b have the reduced rational forms $a = \frac{\alpha}{\beta}$ and $b = \frac{\gamma}{\lambda}$ (i.e. $\beta, \lambda \in \mathbb{Z}^+$ and $\gcd(\alpha, \beta) = \gcd(\gamma, \lambda) = 1$)

such that

$$\beta | \gcd(\lambda, (\alpha)_{\gamma})$$
 , $(\frac{\alpha}{\gamma})_1 < \frac{\beta}{\lambda}$.

Proof. If $b \in \mathbb{Q}$ and $(a)_b \in \mathbb{Z}$, then $a \in \mathbb{Q}$, clearly. So there exist integers α , γ and positive integers β , λ for which $\gcd(\alpha,\beta)=\gcd(\gamma,\lambda)=1$ and $a=\frac{\alpha}{\beta},\,b=\frac{\gamma}{\lambda}$. Now putting $\theta=\left[\frac{a}{b}\right]$ we have $(a)_b=\frac{\alpha\lambda-\beta\theta\gamma}{\beta\lambda}$ thus $\beta\lambda|\alpha\lambda-\beta\theta\gamma$ and so $\beta|\lambda,\,\lambda|\beta\theta$. Therefore there exists integer d such that $\left[\frac{a}{b}\right]=\left[\frac{\alpha\lambda}{\beta\gamma}\right]=\theta=\frac{\lambda}{\beta}d$ and this implies $\frac{\alpha}{\gamma}-\frac{\beta}{\lambda}< d\leq \frac{\alpha}{\gamma}$. But since $\frac{\beta}{\lambda}\leq 1$, then

$$\frac{\alpha}{\gamma} - \frac{\beta}{\lambda} < d = \left[\frac{\alpha}{\gamma}\right] = \frac{\alpha}{\gamma} - \left(\frac{\alpha}{\gamma}\right).$$

So $(\frac{\alpha}{\gamma})_1 < \frac{\beta}{\lambda}$ and

$$(a)_b = \frac{\alpha\lambda - \beta\theta\gamma}{\beta\lambda} = \frac{\alpha - d\gamma}{\beta} = \frac{(\alpha)_{\gamma}}{\beta},$$

therefore $\beta | \gcd(\lambda, (\alpha)_{\gamma})$.

Conversely suppose that the conditions are held. Then $\beta | \lambda$ and $(\frac{\alpha}{\gamma})_1 < \frac{\beta}{\lambda}$ imply $[\frac{a}{b}] = [\frac{\lambda}{\beta} \frac{\alpha}{\gamma}] = \frac{\lambda}{\beta} [\frac{\alpha}{\gamma}]$ (considering the next note) and so $(a)_b = \frac{\alpha}{\beta} - \frac{\gamma}{\lambda} \frac{\lambda}{\beta} [\frac{\alpha}{\gamma}] = \frac{(\alpha)_{\gamma}}{\beta} \in \mathbb{Z}$.

Note: For every real numbers x and $\kappa \neq 0$ we have

$$[\kappa x] = \kappa[x] \Leftrightarrow (\kappa x) = \kappa(x) \Leftrightarrow (x) = (x)_{\frac{1}{\kappa}} \Rightarrow (x) < |\frac{1}{\kappa}|,$$

and the converse of the last conclusion is valid if $\kappa=k$ is a natural number $(x\in[0,\frac{1}{k})+\mathbb{Z}\Leftrightarrow(x)<\frac{1}{k}\Leftrightarrow(x)=(x)_{\frac{1}{k}})$. So we conclude that the condition $(\frac{\alpha}{\gamma})_1<\frac{\beta}{\lambda}$ in the above theorem can be replaced by $[\frac{\lambda}{\beta}\frac{\alpha}{\gamma}]=\frac{\lambda}{\beta}[\frac{\alpha}{\gamma}]$.

Corollary 1.3. Let a, b be reduced rational numbers $a = \frac{\alpha}{\beta}$ and $b = \frac{\gamma}{\lambda}$.

(i) A necessary condition on a and b for $(a)_b$ to be an integer is

$$\lambda(\frac{\alpha}{\gamma})_1 < \beta \le \min\{\lambda, |(\alpha)_{\gamma}|\}.$$

Hence if $b \in \mathbb{Z}$ then we should have $a \in \mathbb{Z}$. Also (in that case) if $\beta \nmid \lambda$ or $\beta \nmid (\alpha)_{\gamma}$ or $\beta \geq |\gamma|$ or $\beta \leq \lambda(\frac{\alpha}{\gamma})_1$, then $(a)_b$ is a non-integer rational number.

(ii) If b>0, then the b-bounded remainder of the (generalized) division of a by b is an integer if and only if $\beta|\gcd(\lambda)$, the remainder of the division of α by γ) and $(\frac{\alpha}{\gamma})_1<\frac{\beta}{\lambda}$ (notice that the identity $\frac{a}{b}=\frac{\alpha\lambda}{\beta\gamma}$ implies there exists another remainder for the division a by b for which is $\beta\gamma$ -bounded and can be gotten from the ordinary division algorithm).

2 Finite b-Representation of Real Numbers

In [3] some applications of b-parts for the infinite digital b-expansion of real numbers (to the base integer $b \neq 0, \pm 1$) were studied. Also some direct formula for their digits (using b-parts) were stated. The followings are their summary.

We call a function $a: \mathbb{Z} \to S$ (where $S \neq \emptyset$ is an arbitrary set) a "two sided sequence" and denote it by $\{a_n\}_{+\infty}^{-\infty}$.

Definition 2.1. Let b > 1 be a fixed positive integer. A *b-digital sequence* (to base *b*) is a two-sided sequence $\{a_n\}_{+\infty}^{-\infty}$ of integers which satisfy the following conditions

- i) $0 \le a_n < b : \forall n \in \mathbb{Z},$
- ii) there exists an integer N such that $a_n=0$, for all n>N
- iii) for every integer m, there exists an integer $n \leq m$ such that $a_n \neq b-1$.

In fact N is the largest integer that $a_N \neq 0$ (we set N = 0, for the zero b-digital sequence).

Theorem 2.2(Fundamental theorem of b-digital sequences). Let b > 1 be a positive integer. A two-sided sequence $\{a_n\}_{+\infty}^{-\infty}$ of integers is a b-digital sequence if and only if there exists a nonnegative real a such that

$$a_n = ([b^{-n}a])_b : \forall n \in \mathbb{Z}.$$

More over in this case we have:

$$a_n = ([ab^{-n}])_b = [(ab^{-n})_b] = (ab^{-n})_b - (ab^{-n}) = (ab^{-n})_b - ((ab^{-n})_b)$$
$$= [ab^{-n}] - [[ab^{-n}]]_b = [ab^{-n}] - [ab^{-n}]_b,$$

for all $n \in \mathbb{Z}$. Also the number N (that is described in the above definition and N+1 is the number of its integer part's digits) is equal to $\lceil \log_b a \rceil$.

Proof. See [3], for a proof by using b-parts.

Theorem 2.3 Fix an integer $b \neq 0, \pm 1$ and a real number $a \neq 0$ and put $\delta_n = \operatorname{sgn}(ab^n)$, where sgn is the signum function. There is a unique two-sided sequence of integers a_n such that

$$a = \sum_{+\infty}^{-\infty} a_n b^n,$$

where a_n satisfy the following conditions

- i) $|a_n| < |b|$: $\forall n \in \mathbb{Z}$,
- ii) $a_n = 0$ or $sgn(a_n) = \delta_n$, for all n,
- iii) For every m there exits $n \leq m$ such that $a_n \neq \delta_n(|b|-1)$.

Moreover we have

$$a_n = \delta_n([|b|^{-n}|a|])_{|b|} : \forall n \in \mathbb{Z}.$$

Proof. See [3].

The generalized division algorithm induces this idea that perhaps we can generalize the base $b \neq 0, \pm 1$, from integers to all $b \in \mathbb{R} \setminus \{0, \pm 1\}$. In this case the method is different and the representation is <u>finite</u> and <u>unique</u> but is <u>not digital</u>. If a, b are positive integers, then it reduces to the ordinary representation a to the base b. In fact we will prove a necessary and sufficient conditions for the finite b-representation to be digital. Of course one can see several different representations for real numbers. For example, there is an infinite <u>digital</u> representation to the base $q \in [1, 2)$ with coefficients 0, 1, that it is not unique (necessarily) and is not usable for all positive real numbers (see [2]).

Now let start it by an important theorem.

Theorem 2.4. Fix real b > 1. For any real $a \ge b$ [0 < a < b] there exists a unique positive integer [nonnegative integer] N and a unique finite real sequence $\{a_n\}_0^N$ such that

- i) $a = \sum_{n=0}^{N} a_n b^n$,
- ii) $a_n \in [0, b)$: for all $0 \le n \le N$,
- iii) $a_n = q_n bq_{n+1}$: for all $0 \le n \le N$,

where q_1, \dots, q_N are positive integers and $q_{N+1} = 0$.

(We call the finite sequences $\{a_n\}_0^N$, $\{q_n\}_0^{N+1}$ finite b-bounded sequence of a and finite b-quotient sequence of a to the base b, respectively).

Proof. Let $a \geq b$. Considering the generalized division algorithm, there exist $r \in [0, b)$, $q \in \mathbb{N}(\mathbb{N}^* = \mathbb{Z}^+, \mathbb{N} = \mathbb{N}^* \cup \{0\})$ such that a = bq + r $(q = \left[\frac{a}{b}\right] \geq 1)$. Set $q_0 = a$, $q_1 = q$ and $a_0 = r$. If $q_1 < b$, then putting N = 1, $a_1 = q_1$ and $q_2 = 0$ the conditions hold. Now if $q_1 \geq b$, then we construct the sequences $\{a_n\}$, $\{q_n\}$ as follows.

Suppose a_n and q_{n+1} have been constructed (for $n \ge 0$). Applying the generalized division algorithm, there exist $0 \le a_{n+1} < b$ and $q_{n+2} \in \mathbb{N}$ such that $a_{n+1} = q_{n+1} - bq_{n+2}$ so

$$q_{n+2} = \left[\frac{q_{n+1}}{h}\right] \le \frac{q_{n+1}}{h} < q_{n+1},$$

(because b>1, $q_{n+1}\in\mathbb{N}^*$). Since $q_1>q_2>\cdots$ and these are nonnegative integers, then there exists the least positive integer N such that $q_N\neq 0$ and $q_{N+1}=0$. Therefore the finite sequences $\{a_n\}_0^N$, $\{q_n\}_0^{N+1}$ have been produced such that $0\leq a_n< b$ and $a_n=q_n-bq_{n+1}$ for all $0\leq n\leq N$ so

$$\sum_{n=0}^{N} a_n b^n = \sum_{n=0}^{N} (q_n b^n - q_{n+1} b^{n+1}) = q_0 - q_{N+1} b^{N+1} = a.$$

Now assume that sequences $\{a_n\}_0^N$, $\{q_n\}_0^{N+1}$ satisfy the conditions, then $a=q_0-q_{N+1}b^{N+1}=q_0$. Also

$$a_n = (a_n)_b = (q_n - bq_{n+1})_b = (q_n)_b$$
 : $n = 0, \dots, N$

so, $q_{n+1} = [b^{-1}q_n]_1$, therefore,

$$q_{n+1} = [b^{-1}q_n]$$
: for all $0 \le n \le N$, $q_0 = a$

(1)
$$a_{n+1} = (q_{n+1})_b = ([b^{-1}q_n])_b$$
: for all $0 \le n \le N - 1$, $a_0 = (a)_b$.

<u>Uniqueness</u>: Let the couple sequences $\{a_n\}_0^N$, $\{q_n\}_0^{N+1}$ and $\{a_n'\}_0^{N'}$, $\{q_n'\}_0^{N'+1}$ satisfy the conditions. If N < N', then the relation (1) implies that $q_n = q_n'$, $a_n = a_n'$ for all $0 \le n \le N$. So

$$q'_{N} = q_{N} = a_{N} = a'_{N} = q'_{N} - bq'_{N+1},$$

therefore $q_{N+1}^{'}=0$ so $0=q_{N+1}^{'}=\cdots=q_{N^{'}}^{'}$ and so $0=a_{N+1}^{'}=\cdots=a_{N^{'}}^{'}$, but this is a contradiction (because $a_{N^{'}}^{'}$ is not zero). Similarly $N^{'} \not< N$. Therefore $N=N^{'}$ and the first part of the proof is complete. Now if 0< a< b, then putting N=0, $q_0=a_0=a=(a)_b$ and $q_1=0$ the conditions (i), (ii), (iii) are hold. For uniqueness, if there exists $N\geq 1$ and a finite sequence $\{a_n\}_0^N$ such that the conditions are hold, then

$$a_N = q_N - bq_{N+1} = q_N \ge 1.$$

So $a = \sum_{0}^{N} a_n b^n \ge a_N b^N \ge b$ thus $a \ge b$ and this is a contradiction.

Note. In the above theorem always $q_0 = a$, $a_0 = (a)_b$ and if $a \ge b$, then a_N always is a natural number. For N we have

$$N = 0 \Leftrightarrow a < b$$
, $N = 1 \Leftrightarrow b < a < b^2 + (a)_b$, $N > 1 \Leftrightarrow a > b^2 + (a)_b$.

In case a=0 we set N=0 (and $a_0=(0)_b=0$). Now if N>1, then

$$a_{N-1} \in \mathbb{Q} \Leftrightarrow b \in \mathbb{Q} \Leftrightarrow a_1, a_2 \cdots a_N \in \mathbb{Q} \Leftrightarrow a_{n_0} \in \mathbb{Q} \text{ for some } 1 \leq n_0 \leq N-1,$$

$$a_{N-1}, a_0 \in \mathbb{Q} \Leftrightarrow a, b \in \mathbb{Q},$$

$$a_{N-1} \in \mathbb{Q}^c \Leftrightarrow b \in \mathbb{Q}^c \Leftrightarrow a_1, a_2 \cdots a_{N-1} \in \mathbb{Q}^c \Leftrightarrow a_{n_0} \in \mathbb{Q}^c \text{ for some } 1 \leq n_0 \leq N.$$

Also if $b \in \mathbb{Q}^c$, then the condition $q_{N+1} = 0$ in the theorem can be replaced by $q_{N+1} \in \mathbb{Q}$, $a_N \in \mathbb{N}$.

Theorem 2.5 (Unique finite b-representation of real numbers). Fix real number $b \neq 0, \pm 1$ and put $\varepsilon = \operatorname{sgn}(|b|-1)$. For every real a there exists a unique nonnegative integer N and a finite real sequence $\{a_n\}_0^N$ such that

i)
$$a = \sum_{0}^{N} a_n b^{\varepsilon n}$$
,

ii) $a_n \in \delta_n[0, |b|^{\varepsilon})$: for all $0 \le n \le N$,

where $\delta_n = \operatorname{sgn}(ab^n)$

iii) $a_n = q_n - b^{\varepsilon} q_{n+1}$: for all $0 \le n \le N$,

where $q_n \in \delta_n \mathbb{N}^*$, for all $1 \leq n \leq N$, and $q_{N+1} = 0$.

(Notice that $|\varepsilon|=|\delta_n|=1$, $b^\varepsilon=b^{\pm 1}$ and we have $\delta_n[0,|b|^\varepsilon)=\delta_{n+1}[0,b^\varepsilon)$ or $\delta_{n+1}(b^\varepsilon,0]$, for comparing this theorem and Theorem 2.4.)

Proof. Put $\alpha = |a|$, $\beta = |b|^{\varepsilon}$. Since $\beta > 1$, then Theorem 2.4 implies that there exists a nonnegative integer N (N = 0 if and only if $0 \le \alpha < \beta$) and finite positive real sequence $\{\alpha_n\}_0^N$ such that

$$\alpha = \sum_{n=0}^{N} \alpha_n \beta^n \Rightarrow a = \sum_{n=0}^{N} \operatorname{sgn}(a) \operatorname{sgn}(b^{\varepsilon n}) \alpha_n b^{\varepsilon n}$$

Putting $\delta_n = \operatorname{sgn}(ab^n) = \operatorname{sgn}(ab^{\varepsilon n})$ and $a_n = \delta_n \alpha_n$ we have $a = \sum_0^N a_n b^{\varepsilon n}$ and $a_n = \delta_n \alpha_n \in \delta_n[0, \beta) = \delta_n[0, |b|^{\varepsilon})$. But we have

$$\delta_n |b|^{\varepsilon} = \operatorname{sgn}(a)\operatorname{sgn}(b^{\varepsilon n})\operatorname{sgn}(b^{\varepsilon})b^{\varepsilon} = \delta_{n+1}b^{\varepsilon},$$

Therefore

$$\delta_n[0, |b|^{\varepsilon}) = \delta_{n+1}[0, 1)b^{\varepsilon} = \delta_{n+1}[0, b^{\varepsilon}) \text{ or } \delta_{n+1}(b^{\varepsilon}, 0].$$

On the other hand $\alpha_n = Q_n - \beta Q_{n+1}$ for all $0 \le n \le N$ where Q_1, \dots, Q_n are positive integers and $Q_{N+1} = 0$. So putting $q_n = \delta_n Q_n$ and considering the above relation, we have $q_n \in \delta_n \mathbb{N}^*$ and $q_{N+1} = 0$ and

$$a_n = \delta_n Q_n - \delta_n Q_{n+1} |b|^{\varepsilon} = q_n - q_{n+1} b^{\varepsilon}.$$

Note that $N,\{a_n\}_0^N$ are unique, considering the above relations and Theorem 2.4.

Definition 2.6. Fix the real number $b \neq 0, \pm 1$. For all real a we call the finite b-bounded sequence $\{a_n\}_0^N$ to the base b, the (generalized) finite representation a to the base b and write

(2)
$$a = \langle a_N \rangle \langle a_{N-1} \rangle \cdots \langle a_0 \rangle_b$$
.

In this representation we call every a_n b-parcel of a and denote it by $dgt_{n,b}^*(a)$ or $prl_{n,b}(a)$.

Notice that we use the notation $dgt_{n,b}(a)$, only for the case that the expansion is digital $(a_n$ are integers for all n). If a, b are natural numbers, then Theorem 2.4 reduces to the b place value notation for a and the symbols <> can be removed in the representation (2), i.e. $a=a_Na_{N-1}\cdots a_{0_b}$

Example 2.7. The following is a unique finite digital $\frac{41}{4}$ -representation:

$$\frac{992653}{2} = <4> <3> <9> <1> <1> $_{\frac{41}{4}}$.$$

Lemma 2.8. Consider the number N in the finite b-representation of a (that N+1 is the number of the b-parcels of a).

If $a \ge b > 0$, then $N \le [\log_b a]$. In general $N \ne [\log_b a]$, but if b is a positive integer, then $N = [\log_b a]$ and $q_n = [b^{-n}a]$, $a_n = ([b^{-n}a])_b$, for all $n \ge 1$ (but not for n = 0).

Proof. If $k = [\log_b a]$, then $0 \le ab^{-k-1} < 1$, on the other hand (1) implies that $q_{k+1} \le ab^{-k-1}$ so $q_{k+1} = 0$ hence $N \le k$. In general $N \ne [\log_b a]$ for if $a = \pi$, $b = \sqrt{2}$, then

$$\pi = <1> <2-\sqrt{2}> <\pi-2\sqrt{2}>_{\sqrt{2}}$$

so $N=2\neq [\log_{\sqrt{2}}\pi]$. But if b is a positive integer, then $q_n=[b^{-n}a]$ and $a_n=([b^{-n}a])_b$, for all $n\geq 1$, considering (1) and the property (V). So $N=[\log_b a]$, considering Theorem 2.2.

Remark 2.9. In general if $a \ge b > 1$, then

$$dgt_{n,b}^*(a) = ([b^{-1}[b^{-1}\cdots[b^{-1}a]\cdots]])_b \ (n \text{ times}) \ : \ \forall n \ge 1,$$

(by (1)) and $dgt_{0,b}^*(a) = (a)_b$ (for all $a \ge 0$) and we have

$$a = (a)_b + ([b^{-1}a])_b + ([b^{-1}[b^{-1}a]])_b + \dots = \sum_{n=0}^{\infty} \mathsf{dgt}_{n,b}^*(a)b^n$$

$$= \sum_{n=0}^{[\log_b a]} \mathsf{dgt}_{n,b}^*(a) b^n = \sum_{n=0}^N \mathsf{dgt}_{n,b}^*(a) b^n,$$

for all $a \ge 1$, b > 1 (note that in the above series $\operatorname{dgt}_{n,b}^*(a) = 0$, for all n > N). If $b \in \mathbb{N}$, then

$$dgt_{n,b}^*(a) = dgt_{n,b}(a) = ([b^{-n}a])_b : \forall n \ge 1,$$

but for n=0 we have $\mathrm{dgt}_{0,b}(a)=([a])_b, \mathrm{dgt}_{0,b}^*=(a)_b$ and

$$\operatorname{dgt}_{0,b}^*(a) = (a)_b = ([a])_b + (a) = \operatorname{dgt}_{0,b}([a]) + \sum_{-1}^{-\infty} \operatorname{dgt}_{n,b}(a)b^n,$$

 $(\operatorname{dgt}_{n,b}^*(a) \text{ is not defined for } n < 0).$

Now we prove the necessary and sufficient conditions for the finite b-representation to be digital.

Theorem 2.10. Let a > b > 0 be real numbers. The finite representation of a to the base b is digital (b-parcels are b-digits) if and only if a and b have the reduced rational forms $a = \frac{\alpha}{\beta}$ and $b = \frac{\gamma}{\lambda}$ such that

(3)
$$\beta | \gcd(\lambda, (\alpha)_{\gamma})$$
, $\max\{\frac{1}{\beta}(\frac{\alpha}{\gamma})_1, (\frac{q_1}{\gamma})_1, (\frac{q_2}{\gamma})_1, \cdots, (\frac{q_N}{\gamma})_1\} < \frac{1}{\lambda}$

where $q_1 = \left[\frac{a}{b}\right]$ and $q_{n+1} = \left[\frac{q_n}{b}\right]$, for $n \ge 1$.

Proof. If the representation is digital, then $b \in \mathbb{Q}$, considering N > 1 (because a > b) and

the condition (iii) of the representation. Moreover if $a_0 \in \mathbb{Q}$, then $a \in \mathbb{Q}$ and Lemma 1.2 implies a and b have the reduced rational forms $a = \frac{\alpha}{\beta}$ and $b = \frac{\gamma}{\lambda}$ such that $\beta | \gcd(\lambda, (\alpha)_{\gamma})$ and $\frac{1}{\beta}(\frac{\alpha}{\gamma})_1 < \frac{1}{\lambda}$. Also the condition (iii) of Theorem 2.4 implies $\lambda | q_{n+1} = [\lambda \frac{q_n}{\gamma}]$, for every natural number n. Now we get (3), considering the following relations (4) and (5):

Notice that if $\kappa \geq 1$ is a real number, then

(4)
$$[x]_{\frac{1}{\kappa}} \in \mathbb{Z} \Leftrightarrow [\kappa x] \in \kappa \mathbb{Z} \Leftrightarrow [\kappa x] = \kappa[x] \Leftrightarrow (\kappa x) = \kappa(x)$$

 $\Leftrightarrow (x) = (x)_{\frac{1}{\kappa}} \Rightarrow (x) < |\frac{1}{\kappa}|,$

and so if $\kappa = k$ is a natural number, then

$$(5) \quad [x]_{\frac{1}{k}} \in \mathbb{Z} \Leftrightarrow k | [kx] \Leftrightarrow [kx] = k[x] \Leftrightarrow (x) < \frac{1}{k} \Leftrightarrow x \in [0, \frac{1}{k}) + \mathbb{Z} \Leftrightarrow (x) = (x)_{\frac{1}{k}}.$$

Conversely, if (3) is held, then Lemma 1.2, the condition (iii) of the representation and (5) imply that the representation is digital.

Example. The followings are some <u>digital</u> finite *b*-representations which come from Theorem 2.4 and it can be seen that the conditions of the above theorem hold.

$$\frac{9}{2} = <1> <2>_{\frac{5}{2}}, \ 16 = <3> <3>_{\frac{13}{3}}$$

$$100 = <6> <11>_{\frac{89}{6}}, \ \frac{737}{2} = <4> <0> <0> <4>_{\frac{9}{2}}.$$

If 0 < b < 1, then we can have another unique finite representation of a which a_n s are decimal numbers. In this case the range values of a_n -s are [0,1) (instead [0,b)).

Theorem 2.11. Fix real 0 < b < 1. For any real $a \ge \frac{1}{b}$ there exists a unique positive integer N and a unique finite real sequence $\{a_n\}_0^N$ such that

i)
$$a = \sum_{0}^{N} a_n b^{-n-1}$$
,

ii) $0 \le a_n < 1$: for all $0 \le n \le N$,

iii) $a_n = bq_n - q_{n+1}$: for all $0 \le n \le N$,

where q_1, \dots, q_N are positive integers and $q_{N+1} = 0$

Proof. Put $\beta = \frac{1}{b}$. Since $a \geq \beta > 1$, then Theorem 2.4 implies there exist a unique positive integer N and a unique positive real sequence $\{\alpha_n\}_0^N$ such that $a = \sum_0^N \alpha_n \beta^n$. Putting $a_n = b\alpha_n$ we have $0 \leq a_n < 1$ and $a = \sum_0^N a_n b^{-n-1}$. Also $\alpha_n = q_n - \beta q_{n+1}$ implies $a_n = bq_n - q_{n+1}$. In fact considering (1) it can be seen that $a_0 = (ba)_1$, $q_0 = a$ and $a_{n+1} = (b[bq_n]_1)_1$ for all $0 \leq n \leq N-1$. Therefore $N, \{a_n\}_0^N$ are unique, considering Theorem 2.4.

References

- [1] Apostol, T.M. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- [2] Glendinning, P., N. Sidorov, Unique Representations of Real Numbers in Non-Integer Bases, *Math. Res. Lett.*, Vol. 8, 2001, 535–543.
- [3] Hooshmand, M.H. b-Digital Sequences, *Proceedings of the 9th world Multiconference on Systemics, Cybernetics and Informatics* (WMSCI 2005)- Orlando, USA, 142–146.
- [4] Hooshmand, M.H., H. Kamarul Haili, Some Algebraic Properties of b-Parts of Real Numbers, *Šiauliai Math. Semin.*, Vol. 3, 2008, No. 11, 115–121.
- [5] Hooshmand, M.H., H. Kamarul Haili, Decomposer and Associative Functional Equations, *Indag. Mathem.*, N.S., Vol. 18, 2007, No. 4, 539–554.