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1 Preliminaries

For any real number a denote by [a] the largest integer not exceeding a and put (a) = a− [a] (the
decimal part of a). Now let b be a nonzero constant real number. For all real numbers a set

[a]b = b[
a

b
] , (a)b = b(

a

b
).

We call the notation [a]b b-integer part of a and (a)b b-decimal part of a. Also [a]b and (a)b are
called b-parts of a.
Clearly a = [a]b + (a)b where

[a]b ∈ bZ =< b >, (a)b ∈ Rb := b[0, 1) = {bd|0 ≤ d < 1}.

Since (a)1 = (a) to prevent any confusion between decimal and parentheses notation, sometimes
we use the symbol (a)1 instead of (a).
It is easy to see that the following properties (I)-(IV) hold:
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(I) For every β ∈ bZ, we have [a + β]b = [a]b + β, (a + β)b = (a)b so if m,n are integers,
then

(ma+ nc)b = (m(a)b + nc)b = (ma+ n(c)b)b = (m(a)b + n(c)b)b = ((ma+ nc)b)b.

Therefore the b-decimal and b-integer part functions (x)b and [x]b are idempotent, their composi-
tions are zero and (x)b satisfies the following functional equations

f(f(x) + y − f(y)) = f(x) , f(x+ y − f(y)) = f(x) , f(x+ f(y + z)) = f(f(x+ y) + z).

Note: One can see the general solution of these functional equations in [5]. In fact the above
basic properties have led us to a type of functions on groups.

(II)
(a)b = a⇐⇒ a ∈ Rb ⇐⇒ [a]b = 0 , (a)b = 0⇐⇒ a ∈ bZ⇐⇒ [a]b = a.

(III)

|(a)b| < |b| , |a| − |b| < |[a]b| ,
[a]b

sgn(b)
≤ a

sgn(b)
<

[a]b + b

sgn(b)
,

where sgn is the signum function.

Now applying the above elementary properties we can deduce and state the followings inter-
esting number theoretic explanation of b-parts of real numbers.

(IV) (Number theoretic explanation of b-parts):
For every positive integer b and real a, [a]b is the same unique integer of the residue class
{[a]− b+ 1, · · · , [a]} (mode b) that is divisible by b (because b|[a]b and [a]− b+ 1 ≤ [a]b ≤ [a]).
Also, for the general explanation of [a]b, if b > 0, then [a]b is the largest element of bZ not ex-
ceeding a and if b < 0, then [a]b is the least element of bZ not less than a.
Now let a , b are positive integers. By the division algorithm we have a = bq + r where q , r are
integers and 0 ≤ r < b, so

(a)b = (bq + r)b = (r)b = r.

It means that (a)b is the same remainder of the division of a by b. It is an important fact that leads
us to the generalized division algorithm (for real numbers) and algebraic properties of b-parts.

Theorem 1.0. Suppose b 6= 0 be a fixed real number.
(a) (The unique representation of real numbers by b-parts) For every real number a there exist
unique numbers a1 and a2 such that

a = a1 + a2 , a1 ∈ bZ , a2 ∈ Rb.

(b) (The generalized division algorithm) For every real number a, there exist a unique integer q
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and a unique non negative real number r such that

a = bq + r , 0 ≤ r < |b|.

(q and r are called integer quotient and b-bounded remainder of the division of a by b, respec-
tively.)

Proof. See [3] and [4] for two different proofs.

Now applying the above theorem we can here state the general number theoretic explanation
of (a)b:
If b > 0, then (a)b is the same b-bounded remainder of the (generalized) division of a by b,
and if b < 0, then (a)b is the inverse of the remainder of the division of −a by −b (because
(a)b = −(−a)−b).
Therefore a ≡ c (mod b) if and only if (a)b = (c)b.

(V) If b is a positive integer, then for every real number a we have

([a])b = [(a)b] = (a)b − (a) = (a)b − ((a)b) = [a]− [[a]]b = [a]− [a]b.

Because a = [a]b + (a)b = [[a]]b + ([a])b + (a) and since b ∈ Z+, then ([a])b ∈ Z and so
0 ≤ ([a])b ≤ b−1 hence 0 ≤ ([a])b+(a) < b therefore Theorem 1.0(a) (the unique representation
of real numbers by b-parts) implies (a)b = ([a])b + (a). On the other hand

[a] = [[a]]b + ([a])b = [[a]b + (a)b] = [a]b + [(a)b].

Now we can deduce the identities.

(VI) For every real numbers a and b 6= 0, the set {(na)b|n ∈ Z} is finite if and only if a ∈ bQ
(i.e. a

b
is rational number). In addition if a

b
is irrational, then the sequence (na)b is dense in the

close interval b[0, 1] (= [0, b] or [b, 0]).

Because ifm and n are two distinct integers, then (na)b = (ma)b if and only if a = [na]b−[ma]b
n−m (no-

tice that [na]b − [ma]b ∈ bZ). Also if n0 is a fixed integer and a = m
n0
b, then (n0a)b = (ma)b = 0

and for every integer k we have

(ka)b = ([k]n0a+ (k)n0a)b = ([
k

n0

]n0a+ (k)n0a)b = ([
k

n0

](n0a)b + (k)n0a)b

= ((k)n0a)b ∈ {0, (a)b, (2a)b, · · · , ((n0 − 1)a)b}.

In fact we have {(na)b|n ∈ Z} = {0, (a)b, (2a)b, · · · , ((n0 − 1)a)b}.

Also the identity (na)b = b(na
b
)1 and the Kronecker’s theorem imply the sequence {(na)b}n≥1 is
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dense in the close interval b[0, 1], if a
b

is irrational.

Remark 1.1 As we can see in [4], in fact the set {(na)b|n ∈ Z} is a cyclic subgroup of the b-
bounded group (Rb,+b) (the least real residues group modulo b, as a generalization of the group
Zn = {0, 1, 2, · · · , n− 1}), where +b is the b-addition (x+b y = (x+ y)b, ∀x, y ∈ R). The above
property states that a cyclic subgroup of (b[0, 1),+b), generated by a, is dense in b[0, 1] if and
only if a

b
is irrational. Also if a

b
= m0

n0
is a rational number for which n0 > 0, gcd(m0, n0) = 1,

then the cyclic group < a > is finite and

< a >= {0, (a)b, (2a)b, · · · , ((n0 − 1)a)b},

If a and b are integers, then (a)b is also an integer. Hence this question has been introduced that
when is (a)b an integer?. The answer of this question is important, because first we want to know
that if a, b ∈ R and b > 0, then when the remainder of the division of a by b is an integer (like the
quotient of the division) . Secondly we need it (in the next section) to determine that when the
finite b-representation of a real number is digital. Before of stating the related lemma notice that:

A necessary condition for (a)b to be an integer is that a ∈< 1, b > (where < 1, b > is the
real subgroup generated by 1 and b). So if (a)b is integer, then the real numbers a, b and 1 are
linearly dependent on Z and Q. The converse is not valid (the conditions are not sufficient), be-
cause if b =

√
2 and a = 2

√
2 + 2, then a ∈< 1, b > and a, b and 1 are linearly dependent,

and (a)b = 2 −
√

2. But the necessary and sufficient condition for (a)b to be an integer is that a
belongs to a subset of < 1, b > as following:

{m+ kb|k ∈ Z,m ∈ Z ∩ Rb},

because in this case

(a)b = (m+ kb)b = (m)b = b(
m

b
)1 = b

m

b
= m.

(its converse is clear). Also in general we have the following inferences:

a, b ∈ Q⇒ (a)b ∈ Q , a ∈ Qc & b ∈ Q⇒ (a)b ∈ Qc

a ∈ Q \ Rb & b ∈ Qc ⇒ (a)b ∈ Qc.

In the case a and b are irrationals, if the real numbers a, b and 1 are linearly independent, then
(a)b is also irrational.
Now we prove a necessary and sufficient conditions for the remainder of the generalized division
of a by b to be integer number.

Lemma 1.2. If b 6= 0 is a rational number, then (a)b is integer if and only if a and b have
the reduced rational forms a = α

β
and b = γ

λ
(i.e. β, λ ∈ Z+ and gcd(α, β) = gcd(γ, λ) = 1)
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such that
β| gcd(λ, (α)γ) , (

α

γ
)1 <

β

λ
.

Proof. If b ∈ Q and (a)b ∈ Z, then a ∈ Q, clearly. So there exist integers α, γ and positive
integers β, λ for which gcd(α, β) = gcd(γ, λ) = 1 and a = α

β
, b = γ

λ
. Now putting θ = [a

b
] we

have (a)b = αλ−βθγ
βλ

thus βλ|αλ − βθγ and so β|λ, λ|βθ. Therefore there exists integer d such
that [a

b
] = [αλ

βγ
] = θ = λ

β
d and this implies α

γ
− β

λ
< d ≤ α

γ
. But since β

λ
≤ 1, then

α

γ
− β

λ
< d = [

α

γ
] =

α

γ
− (

α

γ
).

So (α
γ
)1 <

β
λ

and

(a)b =
αλ− βθγ

βλ
=
α− dγ
β

=
(α)γ
β

,

therefore β| gcd(λ, (α)γ).
Conversely suppose that the conditions are held. Then β|λ and (α

γ
)1 <

β
λ

imply [a
b
] = [λ

β
α
γ
] =

λ
β
[α
γ
] (considering the next note) and so (a)b = α

β
− γ

λ
λ
β
[α
γ
] = (α)γ

β
∈ Z. �

Note: For every real numbers x and κ 6= 0 we have

[κx] = κ[x]⇔ (κx) = κ(x)⇔ (x) = (x) 1
κ
⇒ (x) < |1

κ
|,

and the converse of the last conclusion is valid if κ = k is a natural number (x ∈ [0, 1
k
) + Z ⇔

(x) < 1
k
⇔ (x) = (x) 1

k
). So we conclude that the condition (α

γ
)1 <

β
λ

in the above theorem can
be replaced by [λ

β
α
γ
] = λ

β
[α
γ
].

Corollary 1.3. Let a, b be reduced rational numbers a = α
β

and b = γ
λ

.
(i) A necessary condition on a and b for (a)b to be an integer is

λ(
α

γ
)1 < β ≤ min{λ, |(α)γ|}.

Hence if b ∈ Z then we should have a ∈ Z. Also (in that case) if β - λ or β - (α)γ or β ≥ |γ| or
β ≤ λ(α

γ
)1, then (a)b is a non-integer rational number.

(ii) If b > 0, then the b-bounded remainder of the (generalized) division of a by b is an integer
if and only if β| gcd(λ, the remainder of the division of α by γ ) and (α

γ
)1 <

β
λ

(notice that the
identity a

b
= αλ

βγ
implies there exists another remainder for the division a by b for which is βγ-

bounded and can be gotten from the ordinary division algorithm).
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2 Finite b-Representation of Real Numbers

In [3] some applications of b-parts for the infinite digital b-expansion of real numbers (to the base
integer b 6= 0,±1) were studied. Also some direct formula for their digits (using b-parts) were
stated. The followings are their summary.

We call a function a : Z → S (where S 6= ∅ is an arbitrary set) a ”two sided sequence ” and
denote it by {an}−∞+∞.

Definition 2.1. Let b > 1 be a fixed positive integer. A b-digital sequence (to base b) is a
two-sided sequence {an}−∞+∞ of integers which satisfy the following conditions
i) 0 ≤ an < b : ∀n ∈ Z,
ii) there exists an integer N such that an = 0, for all n > N

iii) for every integer m, there exists an integer n ≤ m such that an 6= b− 1.

In fact N is the largest integer that aN 6= 0 (we set N = 0, for the zero b-digital sequence ).

Theorem 2.2(Fundamental theorem of b-digital sequences). Let b > 1 be a positive integer.
A two-sided sequence {an}−∞+∞ of integers is a b-digital sequence if and only if there exists a
nonnegative real a such that

an = ([b−na])b : ∀n ∈ Z.

More over in this case we have:

an = ([ab−n])b = [(ab−n)b] = (ab−n)b − (ab−n) = (ab−n)b − ((ab−n)b)

= [ab−n]− [[ab−n]]b = [ab−n]− [ab−n]b,

for all n ∈ Z. Also the number N (that is described in the above definition and N + 1 is the
number of its integer part’s digits) is equal to [logb a].

Proof. See [3], for a proof by using b-parts.

Theorem 2.3 Fix an integer b 6= 0,±1 and a real number a 6= 0 and put δn = sgn(abn), where
sgn is the signum function. There is a unique two-sided sequence of integers an such that

a =
−∞∑
+∞

anb
n,

where an satisfy the following conditions
i) |an| < |b| : ∀n ∈ Z,
ii)an = 0 or sgn(an) = δn, for all n,
iii) For every m there exits n ≤ m such that an 6= δn(|b| − 1).
Moreover we have

an = δn([|b|−n|a|])|b| : ∀n ∈ Z.
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Proof. See [3].

The generalized division algorithm induces this idea that perhaps we can generalize the base
b 6= 0,±1, from integers to all b ∈ R \ {0,±1}. In this case the method is different and the repre-
sentation is finite and unique but is not digital. If a, b are positive integers, then it reduces to the
ordinary representation a to the base b. In fact we will prove a necessary and sufficient conditions
for the finite b-representation to be digital. Of course one can see several different representations
for real numbers. For example, there is an infinite digital representation to the base q ∈ [1, 2) with
coefficients 0, 1, that it is not unique (necessarily) and is not usable for all positive real numbers
(see [2]).
Now let start it by an important theorem.

Theorem 2.4. Fix real b > 1. For any real a ≥ b [0 < a < b] there exists a unique positive
integer [nonnegative integer] N and a unique finite real sequence {an}N0 such that
i) a =

∑N
0 anb

n,

ii) an ∈ [0, b) : for all 0 ≤ n ≤ N,

iii) an = qn − bqn+1 : for all 0 ≤ n ≤ N,

where q1, · · · , qN are positive integers and qN+1 = 0.

(We call the finite sequences {an}N0 , {qn}N+1
0 finite b-bounded sequence of a and finite b-quotient

sequence of a to the base b, respectively).

Proof. Let a ≥ b. Considering the generalized division algorithm, there exist r ∈ [0, b),
q ∈ N(N∗ = Z+, N = N∗ ∪ {0}) such that a = bq + r (q = [a

b
] ≥ 1). Set q0 = a, q1 = q

and a0 = r. If q1 < b, then putting N = 1, a1 = q1 and q2 = 0 the conditions hold. Now if
q1 ≥ b, then we construct the sequences {an}, {qn} as follows.
Suppose an and qn+1 have been constructed (for n ≥ 0). Applying the generalized division
algorithm, there exist 0 ≤ an+1 < b and qn+2 ∈ N such that an+1 = qn+1 − bqn+2 so

qn+2 = [
qn+1

b
] ≤ qn+1

b
< qn+1,

(because b > 1, qn+1 ∈ N∗). Since q1 > q2 > · · · and these are nonnegative integers, then
there exists the least positive integer N such that qN 6= 0 and qN+1 = 0. Therefore the finite
sequences {an}N0 , {qn}N+1

0 have been produced such that 0 ≤ an < b and an = qn − bqn+1 for
all 0 ≤ n ≤ N so

N∑
0

anb
n =

N∑
0

(qnb
n − qn+1b

n+1) = q0 − qN+1b
N+1 = a.

Now assume that sequences {an}N0 , {qn}N+1
0 satisfy the conditions, then a = q0−qN+1b

N+1 = q0.
Also

an = (an)b = (qn − bqn+1)b = (qn)b : n = 0, · · · , N
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so, qn+1 = [b−1qn]1 ,therefore,

qn+1 = [b−1qn] : for all 0 ≤ n ≤ N, q0 = a

(1) an+1 = (qn+1)b = ([b−1qn])b : for all 0 ≤ n ≤ N − 1, a0 = (a)b.

Uniqueness: Let the couple sequences {an}N0 , {qn}N+1
0 and {a′

n}N
′

0 , {q′n}N
′
+1

0 satisfy the con-
ditions. If N < N

′ , then the relation (1) implies that qn = q
′
n, an = a

′
n for all 0 ≤ n ≤ N .

So
q
′

N = qN = aN = a
′

N = q
′

N − bq
′

N+1,

therefore q′N+1 = 0 so 0 = q
′
N+1 = · · · = q

′

N ′ and so 0 = a
′
N+1 = · · · = a

′

N ′ , but this is a
contradiction (because a′

N ′ is not zero). Similarly N ′ ≮ N . Therefore N = N
′ and the first part

of the proof is complete. Now if 0 < a < b, then putting N = 0, q0 = a0 = a = (a)b and q1 = 0

the conditions (i), (ii), (iii) are hold. For uniqueness, if there exists N ≥ 1 and a finite sequence
{an}N0 such that the conditions are hold, then

aN = qN − bqN+1 = qN ≥ 1.

So a =
∑N

0 anb
n ≥ aNb

N ≥ bN ≥ b thus a ≥ b and this is a contradiction. �

Note. In the above theorem always q0 = a, a0 = (a)b and if a ≥ b, then aN always is a nat-
ural number. For N we have

N = 0⇔ a < b , N = 1⇔ b ≤ a < b2 + (a)b , N > 1⇔ a ≥ b2 + (a)b.

In case a = 0 we set N = 0 (and a0 = (0)b = 0). Now if N > 1, then

aN−1 ∈ Q⇔ b ∈ Q⇔ a1, a2 · · · aN ∈ Q⇔ an0 ∈ Q for some 1 ≤ n0 ≤ N − 1,

aN−1, a0 ∈ Q⇔ a, b ∈ Q,

aN−1 ∈ Qc ⇔ b ∈ Qc ⇔ a1, a2 · · · aN−1 ∈ Qc ⇔ an0 ∈ Qc for some 1 ≤ n0 ≤ N.

Also if b ∈ Qc, then the condition qN+1 = 0 in the theorem can be replaced by qN+1 ∈ Q, aN ∈ N.

Theorem 2.5 (Unique finite b-representation of real numbers). Fix real number b 6= 0,±1 and
put ε = sgn(|b|−1). For every real a there exists a unique nonnegative integer N and a finite real
sequence {an}N0 such that
i) a =

∑N
0 anb

εn,

ii) an ∈ δn[0, |b|ε) : for all 0 ≤ n ≤ N,

where δn = sgn(abn)

iii) an = qn − bεqn+1 : for all 0 ≤ n ≤ N,

where qn ∈ δnN∗, for all 1 ≤ n ≤ N , and qN+1 = 0.
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(Notice that |ε| = |δn| = 1, bε = b±1 and we have δn[0, |b|ε) = δn+1[0, b
ε) or δn+1(b

ε, 0], for
comparing this theorem and Theorem 2.4.)

Proof. Put α = |a|, β = |b|ε. Since β > 1, then Theorem 2.4 implies that there exists a
nonnegative integer N (N = 0 if and only if 0 ≤ α < β) and finite positive real sequence {αn}N0
such that

α =
N∑
0

αnβ
n ⇒ a =

N∑
0

sgn(a)sgn(bεn)αnb
εn

Putting δn = sgn(abn) = sgn(abεn) and an = δnαn we have a =
∑N

0 anb
εn and an = δnαn ∈

δn[0, β) = δn[0, |b|ε). But we have

δn|b|ε = sgn(a)sgn(bεn)sgn(bε)bε = δn+1b
ε,

Therefore
δn[0, |b|ε) = δn+1[0, 1)bε = δn+1[0, b

ε) or δn+1(b
ε, 0].

On the other hand αn = Qn − βQn+1 for all 0 ≤ n ≤ N where Q1, · · · , Qn are positive integers
and QN+1 = 0. So putting qn = δnQn and considering the above relation, we have qn ∈ δnN∗

and qN+1 = 0 and
an = δnQn − δnQn+1|b|ε = qn − qn+1b

ε.

Note that N ,{an}N0 are unique, considering the above relations and Theorem 2.4. �

Definition 2.6. Fix the real number b 6= 0,±1. For all real a we call the finite b-bounded se-
quence {an}N0 to the base b, the (generalized) finite representation a to the base b and write

(2) a =< aN >< aN−1 > · · · < a0 >b .

In this representation we call every an b-parcel of a and denote it by dgt∗n,b(a) or prln,b(a).

Notice that we use the notation dgtn,b(a), only for the case that the expansion is digital (an are
integers for all n). If a, b are natural numbers, then Theorem 2.4 reduces to the b place value no-
tation for a and the symbols<> can be removed in the representation (2), i.e. a = aNaN−1 · · · a0b

Example 2.7. The following is a unique finite digital 41
4

-representation:

992653

2
=< 4 >< 3 >< 9 >< 9 >< 1 >< 1 > 41

4
.

Lemma 2.8. Consider the number N in the finite b-representation of a (that N + 1 is the number
of the b-parcels of a).
If a ≥ b > 0, then N ≤ [logb a]. In general N 6= [logb a], but if b is a positive integer, then
N = [logb a] and qn = [b−na], an = ([b−na])b, for all n ≥ 1 (but not for n = 0).
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Proof. If k = [logb a], then 0 ≤ ab−k−1 < 1, on the other hand (1) implies that qk+1 ≤ ab−k−1 so
qk+1 = 0 hence N ≤ k. In general N 6= [logb a] for if a = π, b =

√
2, then

π =< 1 >< 2−
√

2 >< π − 2
√

2 >√2

so N = 2 6= [log√2 π]. But if b is a positive integer, then qn = [b−na] and an = ([b−na])b, for all
n ≥ 1, considering (1) and the property (V ). So N = [logb a], considering Theorem 2.2. �

Remark 2.9. In general if a ≥ b > 1, then

dgt∗n,b(a) = ([b−1[b−1 · · · [b−1a] · · · ]])b (n times) : ∀n ≥ 1,

(by (1)) and dgt∗0,b(a) = (a)b (for all a ≥ 0) and we have

a = (a)b + ([b−1a])b + ([b−1[b−1a]])b + · · · =
∞∑
n=0

dgt∗n,b(a)bn

=

[logb a]∑
n=0

dgt∗n,b(a)bn =
N∑
n=0

dgt∗n,b(a)bn,

for all a ≥ 1, b > 1 (note that in the above series dgt∗n,b(a) = 0, for all n > N ).
If b ∈ N, then

dgt∗n,b(a) = dgtn,b(a) = ([b−na])b : ∀n ≥ 1,

but for n = 0 we have dgt0,b(a) = ([a])b, dgt∗0,b = (a)b and

dgt∗0,b(a) = (a)b = ([a])b + (a) = dgt0,b([a]) +
−∞∑
−1

dgtn,b(a)bn,

(dgt∗n,b(a) is not defined for n < 0).

Now we prove the necessary and sufficient conditions for the finite b-represetation to be digi-
tal.

Theorem 2.10. Let a > b > 0 be real numbers. The finite representation of a to the base b
is digital (b-parcels are b-digits) if and only if a and b have the reduced rational forms a = α

β
and

b = γ
λ

such that

(3) β| gcd(λ, (α)γ) , max{ 1

β
(
α

γ
)1, (

q1
γ

)1, (
q2
γ

)1, · · · , (
qN
γ

)1} <
1

λ
,

where q1 = [a
b
] and qn+1 = [ qn

b
], for n ≥ 1.

Proof. If the representation is digital, then b ∈ Q, considering N > 1 (because a > b) and
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the condition (iii) of the representation. Moreover if a0 ∈ Q, then a ∈ Q and Lemma 1.2 im-
plies a and b have the reduced rational forms a = α

β
and b = γ

λ
such that β| gcd(λ, (α)γ) and

1
β
(α
γ
)1 <

1
λ
. Also the condition (iii) of Theorem 2.4 implies λ|qn+1 = [λ qn

γ
], for every natural

number n. Now we get (3), considering the following relations (4) and (5) :
Notice that if κ ≥ 1 is a real number, then

(4) [x] 1
κ
∈ Z⇔ [κx] ∈ κZ⇔ [κx] = κ[x]⇔ (κx) = κ(x)

⇔ (x) = (x) 1
κ
⇒ (x) < |1

κ
|,

and so if κ = k is a natural number, then

(5) [x] 1
k
∈ Z⇔ k|[kx]⇔ [kx] = k[x]⇔ (x) <

1

k
⇔ x ∈ [0,

1

k
) + Z⇔ (x) = (x) 1

k
.

Conversely, if (3) is held, then Lemma1.2, the condition (iii) of the representation and (5) imply
that the representation is digital. �

Example. The followings are some digital finite b-representations which come from Theorem
2.4 and it can be seen that the conditions of the above theorem hold.

9

2
=< 1 >< 2 > 5

2
, 16 =< 3 >< 3 > 13

3

100 =< 6 >< 11 > 89
6
,

737

2
=< 4 >< 0 >< 0 >< 4 > 9

2
.

If 0 < b < 1, then we can have another unique finite representation of a which ans are decimal
numbers. In this case the range values of an-s are [0, 1) (instead [0, b)).

Theorem 2.11. Fix real 0 < b < 1. For any real a ≥ 1
b

there exists a unique positive inte-
ger N and a unique finite real sequence {an}N0 such that
i) a =

∑N
0 anb

−n−1,

ii) 0 ≤ an < 1 : for all 0 ≤ n ≤ N,

iii) an = bqn − qn+1 : for all 0 ≤ n ≤ N,

where q1, · · · , qN are positive integers and qN+1 = 0

Proof. Put β = 1
b
. Since a ≥ β > 1, then Theorem 2.4 implies there exist a unique positive

integer N and a unique positive real sequence {αn}N0 such that a =
∑N

0 αnβ
n. Putting an = bαn

we have 0 ≤ an < 1 and a =
∑N

0 anb
−n−1. Also αn = qn − βqn+1 implies an = bqn − qn+1.

In fact considering (1) it can be seen that a0 = (ba)1, q0 = a and an+1 = (b[bqn]1)1 for all
0 ≤ n ≤ N − 1. Therefore N ,{an}N0 are unique, considering Theorem 2.4. �

14
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