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1 Preliminaries

For any real number a denote by [a] the largest integer not exceeding a and put (a) = a — [a] (the
decimal part of a). Now let b be a nonzero constant real number. For all real numbers a set
a a
= b[- =b(-).
[al, [b] , (a)e (b)
We call the notation [a], b-integer part of a and (a), b-decimal part of a. Also [a], and (a), are

called b-parts of a.
Clearly a = [a], + (a), where

[y € bZ =< b>, (a), € Ry:=b[0,1) = {bd|0 < d < 1}.

Since (a); = (a) to prevent any confusion between decimal and parentheses notation, sometimes
we use the symbol (a); instead of (a).
It is easy to see that the following properties (I)-(IV) hold:



(I) For every 5 € bZ, we have [a + ], = [a], + B, (a + B)p = (a), so if m,n are integers,
then

(ma + ne)y, = (m(a), + nc)y, = (ma + n(c)p)y = (m(a), +n(c)p)y = ((Mma + nc)y)s.

Therefore the b-decimal and b-integer part functions (), and [x], are idempotent, their composi-
tions are zero and (), satisfies the following functional equations

fH@) +y=fw) =F@), flety=[fy) =), fle+fly+2)=fflz+y)+2).

Note: One can see the general solution of these functional equations in [5]. In fact the above
basic properties have led us to a type of functions on groups.

(D

(a)p=a<=a€R,<=[a], =0, (a),=0<= a € bZ < [a], = a.
I
[a]p a__ laly + b

(a0l < 1 Jal = bl < leb], 2205 < s < s

where sgn is the signum function.

Now applying the above elementary properties we can deduce and state the followings inter-
esting number theoretic explanation of b-parts of real numbers.

(IV) (Number theoretic explanation of b-parts):
For every positive integer b and real a, [a], is the same unique integer of the residue class
{la] =b+1,--- ,[a]} (mode b) that is divisible by b (because b|[a], and [a] — b+ 1 < [a], < [a]).
Also, for the general explanation of [a],, if b > 0, then [a], is the largest element of bZ not ex-
ceeding a and if b < 0, then [a], is the least element of bZ not less than a.
Now let a , b are positive integers. By the division algorithm we have a = bq + r where ¢ , r are
integers and 0 < r < b, so

(a)y = (bg+ 1)y = (r)y =

It means that (), is the same remainder of the division of a by b. It is an important fact that leads
us to the generalized division algorithm (for real numbers) and algebraic properties of b-parts.

Theorem 1.0. Suppose b # 0 be a fixed real number.
(a) (The unique representation of real numbers by b-parts) For every real number a there exist
unique numbers a; and ay such that

a=ai+ay , ay €0Z , ay € Ry.

(b) (The generalized division algorithm) For every real number a, there exist a unique integer ¢



and a unique non negative real number r such that
a=bg+r , 0<r<]|b.

(¢ and r are called integer quotient and b-bounded remainder of the division of a by b, respec-
tively.)

Proof. See [3] and [4] for two different proofs.

Now applying the above theorem we can here state the general number theoretic explanation
of (a)y:

If b > 0, then (a), is the same b-bounded remainder of the (generalized) division of a by b,
and if b < 0, then (a), is the inverse of the remainder of the division of —a by —b (because

(a)p = —(=a)-p).
Therefore a = ¢ (mod b) if and only if (a), = (¢)s.

(V) If b is a positive integer, then for every real number a we have

([a])o = [(a)s] = (a)o = (@) = (a)y = ((a)o) = [a] = [[a]], = [a] — [als.

Because a = [a], + (a), = [[a]]y + ([a])s + (a) and since b € ZT, then ([a]), € Z and so
0 < ([a])p < b—1hence 0 < ([a])p+(a) < btherefore Theorem 1.0(a) (the unique representation
of real numbers by b-parts) implies (@), = ([a]), + (a). On the other hand

[a] = [lalls + ([al)s = [lals + (a)o] = [als + [(a)s].

Now we can deduce the identities.

(VI) For every real numbers a and b # 0, the set {(na)y|n € Z} is finite if and only if a € bQ

(i.e. ¢ is rational number). In addition if 7 is irrational, then the sequence (na)y is dense in the
close interval b[0, 1] (= [0, b] or [b, 0]).

Because if m and n are two distinct integers, then (na), = (ma), if and only if a = % (no-
tice that [nal, — [mal, € bZ). Also if ng is a fixed integer and @ = b, then (noa), = (ma), = 0
and for every integer £ we have

(ka)s = (Kt + (Bno@)s = ([0 + (B)my @)y = ([ (o) + (K)ny )

no Ny

= ((k)noa)b € {07 (a)b7 (2(1)5’ R ((nU - 1)a>b}'
In fact we have {(na),|n € Z} = {0, (a), (2a)p, -, ((no — 1)a)p}.

Also the identity (na), = b(n}): and the Kronecker’s theorem imply the sequence {(na);}n>1 is



dense in the close interval b[0, 1], if ¢ is irrational.

Remark 1.1 As we can see in [4], in fact the set {(na)y|n € Z} is a cyclic subgroup of the b-
bounded group (R, +;) (the least real residues group modulo b, as a generalization of the group
Z, =40,1,2,--- ,n—1}), where + is the b-addition (x +,y = (z +y)s, V2, y € R). The above
property states that a cyclic subgroup of ([0, 1),+), generated by a, is dense in b[0, 1] if and
only if ¥ is irrational. Also if § = :’:—é’ is a rational number for which ny > 0, ged(mg, ng) = 1,
then the cyclic group < a > is finite and

<a>={0,(a), (2a)s, -, ((no — 1)a)s},

If a and b are integers, then (a), is also an integer. Hence this question has been introduced that
when is (@), an integer?. The answer of this question is important, because first we want to know
thatif a,b € R and b > 0, then when the remainder of the division of a by b is an integer (like the
quotient of the division) . Secondly we need it (in the next section) to determine that when the
finite b-representation of a real number is digital. Before of stating the related lemma notice that:

A necessary condition for (a), to be an integer is that a €< 1,b > (where < 1,b > is the
real subgroup generated by 1 and b). So if (a), is integer, then the real numbers a, b and 1 are
linearly dependent on Z and Q. The converse is not valid (the conditions are not sufficient), be-
cause if b = v2 and a = 2v/2 + 2, then a €< 1,b > and a, b and 1 are linearly dependent,
and (a), = 2 — v/2. But the necessary and sufficient condition for (a), to be an integer is that a
belongs to a subset of < 1,b > as following:

{m + kblk € Z,m € ZN Ry},
because in this case

(@)y = (m + kb, = (m), = b(%)l - b% —m.

(its converse is clear). Also in general we have the following inferences:
a,beQ=1(a),€Q, acQ&beQ= (a), €Q°

aE@\Rb&bGQC:(a)bGQC.

In the case a and b are irrationals, if the real numbers a, b and 1 are linearly independent, then
(a)y is also irrational.

Now we prove a necessary and sufficient conditions for the remainder of the generalized division
of a by b to be integer number.

Lemma 1.2. If b # 0 is a rational number, then (a), is integer if and only if @ and b have

the reduced rational forms ¢ = § and b= 1 (e B, e Z"and ged(a, B) = ged(y,A) = 1)



such that
Blecd(A, (@),) <%>1<§.

Proof. If b € Q and (a), € Z, then a € Q, clearly. So there exist integers «, v and positive
integers 3, A for which ged(ev, f) = ged(v,A) = 1and a = §, b = 3. Now putting § = [7] we
have (a), = % thus SA|aX — B0~ and so 5|\, A|50. Therefore there exists integer d such
that [§] = [%] =0= %d and this implies £ — § <d < . Butsince § < 1, then

So (%) < 5 and
_aA=f0y _a—dy _(a)

(a)b B 3 3

therefore 3| ged(, (a),).
B

Conversely suppose that the conditions are held. Then 5|\ and (2); < 5 imply [§] = [%%] =
A

_aAfa) — (@)
3 (2] ="F € L. O

N . _a
[£] (considering the next note) and so (a), = § — 35

Note: For every real numbers = and x # 0 we have
1
[ka] = klz] & (kz) = K(z) & () = (2)1 = (z) <[],
K K

and the converse of the last conclusion is valid if x = k is a natural number (z € [0, %) + 7 &

() <1 & () = (:c)%). So we conclude that the condition (£); < § in the above theorem can
o] = 3[2]

Aal _ Ala
B plyd

be replaced by |

Corollary 1.3. Let a, b be reduced rational numbers a = % and b = }

(i) A necessary condition on a and b for (a), to be an integer is
« .
A< < mindA, [(a), [}

Hence if b € Z then we should have a € Z. Also (in that case) if 51 A or 8 1 (a), or § > || or
B < A(%)1, then (a)y is a non-integer rational number.

(ii) If b > 0, then the b-bounded remainder of the (generalized) division of a by b is an integer
if and only if S| ged (A, the remainder of the division of « by v ) and (2); < § (notice that the

o
gl
identity 7 = z—i‘ implies there exists another remainder for the division a by b for which is F-

bounded and can be gotten from the ordinary division algorithm).



2 Finite b-Representation of Real Numbers

In [3] some applications of b-parts for the infinite digital b-expansion of real numbers (to the base
integer b # 0, £1) were studied. Also some direct formula for their digits (using b-parts) were
stated. The followings are their summary.

We call a function a : Z — S (where S # () is an arbitrary set) a "two sided sequence ” and
denote it by {a, }  %.

Definition 2.1. Let b > 1 be a fixed positive integer. A b-digital sequence (to base b) is a
two-sided sequence {a, } % of integers which satisfy the following conditions

N0<a,<b : VnezZ,

ii) there exists an integer /V such that a,, = 0, for all n > N

iii) for every integer m, there exists an integer n < m such that a,, # b — 1.

In fact NV is the largest integer that ay # 0 (we set N = 0, for the zero b-digital sequence ).

Theorem 2.2(Fundamental theorem of b-digital sequences). Let b > 1 be a positive integer.
A two-sided sequence {a,}; 3 of integers is a b-digital sequence if and only if there exists a
nonnegative real a such that

a, = ([b7"al), :Vne€Z.

More over in this case we have:
an, = ([ab™"])p = [(ad™")s] = (ab™")p — (ab™") = (ab™")p — ((ab™")s)

= [ab™] = [[ab™"]lp = [ab™"] = [ab™"],,

for all n € Z. Also the number N (that is described in the above definition and N + 1 is the
number of its integer part’s digits) is equal to [log, a].

Proof. See [3], for a proof by using b-parts.

Theorem 2.3 Fix an integer b # 0, £1 and a real number a # 0 and put 6,, = sgn(ab™), where
sgn is the signum function. There is a unique two-sided sequence of integers a,, such that

—00
a= E a,b",
—+00

where a,, satisfy the following conditions
D)las| <1b] : VneZ,
ii)a, = 0 or sgn(a,) = d,, for all n,
iii) For every m there exits n < m such that a,, # 6, (|b] — 1).
Moreover we have
an = 0, ([|0] " |a|))p VN € Z.



Proof. See [3].

The generalized division algorithm induces this idea that perhaps we can generalize the base
b # 0,+1, from integers to all b € R\ {0, £1}. In this case the method is different and the repre-
sentation is finite and unique but is not digital. If a, b are positive integers, then it reduces to the

ordinary representation a to the base b. In fact we will prove a necessary and sufficient conditions
for the finite b-representation to be digital. Of course one can see several different representations
for real numbers. For example, there is an infinite digital representation to the base ¢ € [1, 2) with
coefficients 0, 1, that it is not unique (necessarily)anTs not usable for all positive real numbers
(see [2)]).

Now let start it by an important theorem.

Theorem 2.4. Fix real b > 1. For any real « > 0 [0 < a < b] there exists a unique positive
integer [nonnegative integer] N and a unique finite real sequence {a,, }{’ such that

i) a= Zév a,b",

ii) a, € [0,b) : forall0 <n <N,

iii) a, = ¢, — bgpr1 : forall0 <n < N,

where ¢, - - - , gy are positive integers and gy, = 0.

(We call the finite sequences {a, }Y', {g,}o' ™ finite b-bounded sequence of a and finite b-quotient
sequence of a to the base b, respectively).

Proof. Let a > b. Considering the generalized division algorithm, there exist r € [0,b),
q € NN* = Z", N =N'U{0}suchthata = bg +7 (¢ = [§] > 1). Setqo = a, @1 = ¢
and ag = r. If ¢ < b, then putting N = 1, a; = ¢ and ¢; = 0 the conditions hold. Now if
¢1 > b, then we construct the sequences {a, }, {¢,} as follows.

Suppose a,, and g,+1 have been constructed (for n > 0). Applying the generalized division

algorithm, there exist 0 < a,,.1 < b and ¢, 2 € Nsuch that a,,;1 = ¢,+1 — bgp12 SO

An+1 An+1
Qny2 = [ i ] < “ < Gn+1;
b b
(because b > 1, ¢,+1 € N¥). Since q; > ¢ > --- and these are nonnegative integers, then

there exists the least positive integer N such that ¢ # 0 and gy = 0. Therefore the finite
sequences {a, }¥, {¢.}o"™" have been produced such that 0 < a,, < band a,, = ¢, — bq,, for
all0 <n < N so

N N
Z a,b" = Z(ann - (]n+1bn+1) =4qo — C]NJrleJrl =a.
0 0

Now assume that sequences {a,, }3, {¢, }5""" satisfy the conditions, then a = go—qn 16V = qo.

Also
an = (an)b = (Qn - an+1)b = (Qn)b :n=0,---,N

10



$0, Gni1 = [b71qy,]1 »therefore,
Gni1=[0""q,] : forall0<n <N, gg=a

(1) n1 = (qui1)o = (b qu])p = forall 0 <n < N —1, ag = (a),.

Uniqueness: Let the couple sequences {a,}Y, {¢.}0" " and {a, }¥ B {g.}} 1 satisfy the con-
ditions. If N < N, then the relation (1) implies that ¢, = ¢,,, a, = a, forall 0 < n < N.
So

q;V =qgn =an = alN = q;\; - bq;\f+17
therefore q;v+1 =0s00 = q;v+1 = ... = q;v, and so 0 = aljv+1 = ... = a;v,, but this is a
v 1s not zero). Similarly N " £ N. Therefore N = N’ and the first part
of the proof is complete. Now if 0 < a < b, then putting N =0, g = agp =a = (a),and ¢; =0

/

contradiction (because a

the conditions (i), (ii), (ii1) are hold. For uniqueness, if there exists N > 1 and a finite sequence
{a, }{¥ such that the conditions are hold, then

any =qn — bgn+1 = qnv > 1.

Soa = Zév a,b”® > ayb > bV > bthus a > b and this is a contradiction. O

Note. In the above theorem always ¢y = a, ap = (a), and if a > b, then ay always is a nat-
ural number. For N we have

N=0&a<b, N=1lb<a<b +(a), , N>1&a>b+(a),.
In case a = 0 we set N = 0 (and ay = (0), = 0). Now if N > 1, then
an-1€QebeQ s a,ay--ray € Q& ay, € Q forsomel <ng < N —1,

aN—17a0€@<:>G7bE@v
an-1 €Q&be Qs a,a2-- a1 € Q° & ay, € Q° forsome 1 < ny < N.

Alsoif b € Q¢, then the condition g1 = 0 in the theorem can be replaced by gy 1 € Q, ay € N.

Theorem 2.5 (Unique finite b-representation of real numbers). Fix real number b # 0,41 and
put e = sgn(|b| — 1). For every real a there exists a unique nonnegative integer N and a finite real
sequence {a,, }{¥ such that

i) a= Zév a,b*",

ii) a, € 6,[0,[b7) : forall0 <n <N,

where §,, = sgn(ab™)

i) a, = ¢ — 0°quy1 : forall0 <n < N,

where ¢, € §,N*, forall 1 <n < N, and gy41 = 0.

11



(Notice that |e| = |d,] = 1, b° = b*! and we have 6,,[0,]b]°) = 0,,41[0,b°) or §,1(b%,0], for
comparing this theorem and Theorem 2.4.)

, B = |b|°. Since 5 > 1, then Theorem 2.4 implies that there exists a
nonnegative integer N (N = 0 if and only if 0 < o < (3) and finite positive real sequence {c, }2’
such that

Proof. Put o = |a

N N
a = Z a,f" = a= Z sgn(a)sgn(b™")a,b"
0 0

Putting 9,, = sgn(ab™) = sgn(ab®") and a,, = d,«,, we have a = Z(])V a,b" and a,, = d,q,, €
9,10, 5) = 0,]0,|b|°). But we have

0 |b|F = sgn(a)sgn(b™)sgn(b%)b = 6,410,
Therefore
3]0, |6]7) = 0,410, 1)0° = 6,,41[0,6%) or 9,41 (%, 0].

On the other hand «,, = @), — Q41 forall 0 < n < N where @)y, - - - , (), are positive integers
and Q.1 = 0. So putting ¢, = 9,,Q0,, and considering the above relation, we have ¢, € 9,N*
and gy.1 = 0 and

Ap = 5nQn - 5nQn+1|b|6 =(dn — Qn+1b6~

Note that N,{a, }2’ are unique, considering the above relations and Theorem 2.4. t

Definition 2.6. Fix the real number b # 0,+1. For all real a we call the finite b-bounded se-
quence {a, }} to the base b, the (generalized) finite representation a to the base b and write

(2) a =< any ><an—_1 > -<ag>yp -

In this representation we call every a,, b-parcel of a and denote it by dgt;, ,(a) or prl, ,(a).

Notice that we use the notation dgt,, ,(a), only for the case that the expansion is digital (a,, are
integers for all n). If a, b are natural numbers, then Theorem 2.4 reduces to the b place value no-
tation for a and the symbols <> can be removed in the representation (2),i.e. « = ayay_1 - - - ag,

Example 2.7. The following is a unique finite digital %—representation:

992653
2

:<4><3><9><9><1><1>%.

Lemma 2.8. Consider the number NV in the finite b-representation of a (that N + 1 is the number
of the b-parcels of a).

Ifa > b > 0, then N < [log,a]. In general N # [log, a], but if b is a positive integer, then
N = [logy a] and g, = [b~"al, a, = ([b""a])s, for all n > 1 (but not for n = 0).

12



Proof. If k = [log, a, then 0 < ab~*~! < 1, on the other hand (1) implies that g, ; < ab~*"! so
gk+1 = O hence N < k. In general N # [log, a| forifa =7, b = V2, then

T=<1><2-V2>< T -2V2> 5

so N = 2 # [log 5 7]. But if b is a positive integer, then ¢, = [b™"a] and a,, = ([b~"a]),, for all
n > 1, considering (1) and the property (V). So N = [log, al, considering Theorem 2.2. O

Remark 2.9. In general if a > b > 1, then
dgty ,(a) = (b '[b~"---[b"a]---]])p (ntimes) : Vn > 1,

(by (1)) and dgt; ,(a) = (a), (for all @ > 0) and we have

a = (a)y+ (0~ a))y + (L7 all)y + - = D det;, y(a)b"
[logy a

] N
= ) dgth,(a)b" = dgt, ,(a)b",
n=0 n=0

forall a > 1, b > 1 (note that in the above series dgt;, ,(a) = 0, for all n > N).
If b € N, then
dgt;, ,(a) = dgt,, ,(a) = ([b"al)y : Vn >1,

but for n = 0 we have dgt, ,(a) = ([a])s, dgt;, = (a), and

dgtgy(a) = (a)y = ([a])s + (@) = dgtyp(la]) + Y dgt, ,(@)d",
-1
(dgt;, ,(a) is not defined for n < 0).

Now we prove the necessary and sufficient conditions for the finite b-represetation to be digi-
tal.

Theorem 2.10. Let a > b > 0 be real numbers. The finite representation of a to the base b
is digital (b-parcels are b-digits) if and only if a and b have the reduced rational forms a = % and
b = 1 such that

(3) Blecd( (a),) max{%<%>1,<%>17<%>1,--~,<%N>1}< |

where ¢, = [¢] and ¢, 11 = [%], forn > 1.

Proof. If the representation is digital, then b € Q, considering N > 1 (because a > b) and

13



the condition (iii) of the representation. Moreover if ap € Q, then ¢ € Q and Lemma 1.2 im-

plies a and b have the reduced rational forms @ = § and b = § such that 3] ged(A, (a),) and

5(2)1 < 3. Also the condition (iii) of Theorem 2.4 implies A|g,1 = [A\%], for every natural
number n. Now we get (3), considering the following relations (4) and (5) :

Notice that if k > 1 is a real number, then

(4) [z]1 € Z < [ra] € KZ & [ra] = klz] & (ka) = K(2)

(@)= (01 = @) <[],

K

and so if kK = k is a natural number, then

€Z<:>k|[kx}<:>[kx]:k[x]<:>(x)<1@:1:6[O,%)—FZ@(:L‘):(Q:) |

() L -

e

1
k

Conversely, if (3) is held, then Lemmal.2, the condition (iii) of the representation and (5) imply
that the representation is digital. U

Example. The followings are some digital finite b-representations which come from Theorem
2.4 and it can be seen that the conditions of the above theorem hold.

9
§:<1><2>g,16:<3><3>13

3

100:<6><11>869,§:<4><0><0><4>3.

If 0 < b < 1, then we can have another unique finite representation of a which a,s are decimal
numbers. In this case the range values of a,,-s are [0, 1) (instead [0, b)).

Theorem 2.11. Fix real 0 < b < 1. For any real a > % there exists a unique positive inte-
ger N and a unique finite real sequence {a,, }{’ such that

i) a=>1ab

imo0<a,<1 : forall0<n<N\,

iii) a, = bq, — @1 : forall0 <n < N,

where q1, - - - , gy are positive integers and gy, = 0

Proof. Put 5 = % Since a > [ > 1, then Theorem 2.4 implies there exist a unique positive
integer N and a unique positive real sequence {c, }{’ such that a = Zév o, 5", Putting a,, = bay,
we have 0 < a,, < 1 and a = Zév a,b="" 1. Also o,, = q, — B¢n,1 implies a,, = bg, — Gpi1-
In fact considering (1) it can be seen that ay = (ba)i, o = a and a,1 = (b[bg,]1); for all
0 <n < N — 1. Therefore N,{a, }} are unique, considering Theorem 2.4. O

14



References

(1]
(2]

(3]

[4]

[5]

Apostol, T.M. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

Glendinning, P., N. Sidorov, Unique Representations of Real Numbers in Non-Integer
Bases, Math. Res. Lett., Vol. 8, 2001, 535-543.

Hooshmand, M.H. b-Digital Sequences, Proceedings of the 9th world Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005)- Orlando, USA, 142-146.

Hooshmand, M.H., H. Kamarul Haili, Some Algebraic Properties of b-Parts of Real Num-
bers, Siauliai Math. Semin., Vol. 3, 2008, No. 11, 115-121.

Hooshmand, M.H., H. Kamarul Haili, Decomposer and Associative Functional Equations,
Indag. Mathem., N.S., Vol. 18, 2007, No. 4, 539-554.

15



