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1 Introduction 

Many fractions (a/b, where 0 < a < b are integers) can be expressed as the sum of three unit 
fractions 
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≤≤<++= 0111 , (1) 

where the denominators are integers [6, 7].  It is normal to require that the denominators are 
distinct, but I relax this constraint for reasons that will become apparent.  Of course, some 
fractions can not be written in this form [8, 9], but where (1) does apply, there are likely to be 
solutions for more than one x for each of which there may be more than one (y, z) [1, 2].  This 
prompts one to ask how many solutions there might be and how to estimate the denominators, 
and, perhaps, what determines whether or not there are solutions to (1). 

2 Upper limit of the number of solutions 

There can be many solutions to (1) and some of them are made clearer in this form 

 ( )( ) ( )( ) 22 xbbxzbaxbxybax =−−−− . (2) 

Five possible solutions can be obtained directly from (2), corresponding to  

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )222222 ,1,,,,,,,,, xbbxbxbxxbxbxbbxzbaxbxybax =−−−−  (3) 
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if x < b, and there are more unless both b and x are prime.  The solution corresponding to 
(bx, bx) must yield y = z, which necessitates the relaxation of the usual requirement that x, y 
and z be distinct (1). 

Since the divisors are employed in complementary pairs, the number of possible solutions is  
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where the pi are the prime factors of b2x2 and the αi are integers.  
For example, if x = 41 and b = 121, b2x2 = 114 · 412 and the divisors are the five in (3) 

((112 = b, 112
 · 412 = bx2), (41 = x, 114 · 41 = b2x), (112 · 41 = bx, 112 · 41 = bx), (412 = x2, 

114 = b2) and (1, 114 · 412 = b2x2)) and three others ((11, 113 · 412), (113, 11 · 412) , (11 · 41, 
113 · 41)). The number of possible solutions can vary considerably.  For example, if b = 121, 
Nx = 8 for x = 41 (listed above), but for x = 42 (b2x2 = 22 · 32 · 72 · 112) Nx = 41.  However, 
some of these possibilities may not yield integer solutions.  For example, if a = 3, b = 121 and 
x = 41, all of the 8 possibilities yield integer solutions, but for x = 42, only 15 of the 41 
possibilities are solutions.  Of course, Nx is an estimate of the number of possible solutions for 
a specific x and many different values of x may be possible, so 
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For example, for a = 3 and b = 121, there are 64 solutions for x ranging from 41 to 66 [1]. 

3 Determining the denominators 

The five possible solutions given in (3) yield  
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If either b or x is not prime the other solutions are easily determined in the same way.  
Obviously, all of the solutions depend on knowing x, but since ⎡ ⎤ ⎣ ⎦abxab /3/ ≤≤  it is simple, 
if potentially tedious, to identify appropriate values of  x.   

In general, whether or not b or x is prime, the solutions of (2) are 
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where p is product of some of the prime factors of bx.  There is no solution if (ax – p)ł(bx + p) 
or płbx which might occur, for example, if p = x2 (3). 

The five analytical solutions in (5) can be used to obtain expansions of the form 

 ( ) ( ) ( ) ( )nFnFnFnF
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where the Fi(n) are polynomials in integer n with integral coefficients. As for (1), it is not 
possible to express every fraction in the form of (6) and it is not possible to write a general 
expression in this form [4]. However, there are many specific examples of these [3, 5], but as 
an example the explicit expansions of 3/(6n + 1) obtained using the five solutions in (5) are 
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as is easily confirmed. Of these, Schinzel [3] credited the fourth to Sierpinski and I have 
reported the second previously [2]. All of these expansions have the smallest x, but it is also 
possible to use the first solution, for example, in (5) to obtain expansions with larger x values 
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of which I have previously reported the first [2] and the last is trivial. 
 Similarly, (5) also provides an easy means of generating expansions related to (7): 
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4 More general expansions 

Equation (5) can be used to generate much more general expressions. For example,  
( ) ( )( ) ( )2,, bxbbxzbaxbxybax =−−−−  yields 
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for integer A ≥ 1 and n ≥ 1, which can be summarised as 
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{m ∈ ℤ: An + m  > 1}. 
Using ( ) ( )( ) ( )xbxbxzbaxbxybax 2,, =−−−−  a related general solution is 
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Finally, expressions in which a is not fixed can be obtained from (5) 
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and the more general expression for integer B  
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