Pulsated Fibonacci sequence. Part 2

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering - Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

Abstract: Second type of Pulsated Fibonacci sequence is introduced and explicit formulas for the form of its members are formulated and proved.

Keywords: Fibonacci sequence

AMS Classification: 11B39

On 29 Sept. 2013, I wrote the first part of the paper and on the next day I sent it to my colleague and friend Prof. Tony Shannon for his 75th birtday and included it in previous number of the journal (see [1]), that was dedicated to him. Soon after this, I saw that the introduced sequence can be further modified and extended. In the present paper, such a modification of the Pulsated Fibonacci sequence is given and in a next research another extension of the new type of Fibonacci sequences will be described.

In [1] it was mentioned that during the last century, a lot of extensions and modifications of the Fibonacci sequence were introduced. Shannon and I defined some of them (see, e.g., our book [2]).

In [1], continuing this direction of research related to Fibonacci sequences, a new type of Fibonacci like sequence was introduced, as follows.

Let a and b be two fixed real numbers. Let us construct the following two sequences

$$\alpha_{0} = a, \ \beta_{0} = b$$

$$\alpha_{2k+1} = \beta_{2k+1} = \alpha_{2k} + \beta_{2k},$$

$$\alpha_{2k+2} = \alpha_{2k+1} + \beta_{2k},$$

$$\beta_{2k+2} = \beta_{2k+1} + \alpha_{2k},$$

for the natural number $k \ge 0$. This pair of sequences we called in [1] *Pulsated Fibonacci sequence*. Now, let us call it (*a*, *b*)-*Pulsated Fibonacci sequence*.

Now, we introduce a modification of the above sequence.

Let a, b and c be three fixed real numbers. Let us construct the following two sequences

$$\alpha_0 = a, \ \beta_0 = b$$
$$\alpha_1 = \beta_1 = c$$
$$\alpha_{2k} = \alpha_{2k-1} + \beta_{2k-2},$$
$$\beta_{2k} = \beta_{2k-1} + \alpha_{2k-2},$$
$$\alpha_{2k+1} = \beta_{2k+1} = \alpha_{2k} + \beta_{2k},$$

for the natural number $k \ge 1$. This pair of sequences we call (a,b;c)-Pulsated Fibonacci sequence.

The first values of the new sequence are given in the following

$\alpha_n = \beta_n \qquad \qquad \beta_n$ α_n nb 0 a1 _ _ c2 b+ca + c_ _ a+b+2c3 _ _ 4 2a+b+3ca+2b+3b_ 3a+3b+6c5_ _ 6 4a + 5b + 9c5a + 4b + 9c_ 9a + 9b + 18c7 _ _ 8 14a + 13b + 27c13a + 14b + 27c9 _ 27a + 27b + 54c____ _ 40a + 41b + 81c41a + 40b + 81c10 _ . 81a + 81b + 162c11 ____ ÷ ÷ ÷ ÷

TABLE

Theorem. For every natural number $k \ge 0$,

$$\alpha_{2k+1} = \beta_{2k+1} = 3^{k-1}a + 3^{k-1}b + 2.3^kc, \tag{1}$$

$$\alpha_{4k+2} = \frac{3^{2k} - 1}{2}a + \frac{3^{2k} + 1}{2}b + 3^{2k}c, \tag{2}$$

$$\beta_{4k+2} = \frac{3^{2k} + 1}{2}a + \frac{3^{2k} - 1}{2}b + 3^{2k}c.$$
(3)

$$\alpha_{4k} = \frac{3^{2k-1}+1}{2}a + \frac{3^{2k-1}-1}{2}b + 3^{2k-1}c, \text{ for } k \ge 1,$$
(4)

$$\beta_{4k} = \frac{3^{2k-1} - 1}{2}a + \frac{3^{2k-1} + 1}{2}b + 3^{2k-1}c, \text{ for } k \ge 1.$$
(5)

Proof. Obviously, for k = 0 the assertion is valid. Let us assume that for some natural number

k > 0, (1)-(5) are valid. For the natural number k + 1, first, we check that

$$\alpha_{4k+1} = \beta_{4k+1} = \alpha_{4k} + \beta_{4k} = \frac{3^{2k-1}+1}{2}a + \frac{3^{2k-1}-1}{2}b + 3^{2k-1}c + \frac{3^{2k-1}-1}{2}a + \frac{3^{2k-1}+1}{2}b + 3^{2k-1}c = 3^{2k-1}a + 3^{2k-1}b + 2 \cdot 3^{2k-1}c.$$

Second, we check that

$$\begin{aligned} \alpha_{4k+2} &= \alpha_{4k+1} + \beta_{4k} = 3^{2k-1}a + 3^{2k-1}b + 2 \cdot 3^{2k-1}c + \frac{3^{2k-1}-1}{2}a + \\ \frac{3^{2k-1}+1}{2}b + 3^{2k-1}c &= \frac{3^{2k}-1}{2}a + \frac{3^{2k}+1}{2}b + 3^{2k}c. \end{aligned}$$

All other equalities are checked analogously.

For example, if b = -a, then the Pulsated Fibonacci sequence has the form:

n	α_n	$\alpha_n = \beta_n$	β_n
0	a	—	-a
1	—	С	_
2	-a+c	_	a + c
3	—	2c	_
4	a + 3c	_	-a + 3b
5	—	6c	_
6	-a+9c	_	a + 9c
7	—	18c	_
8	a + 27c	_	-a + 27c
9	_	54c	_
÷		:	÷

while, if b = a, then the Pulsated Fibonacci sequence has the form:

n	$lpha_n$	$\alpha_n = \beta_n$	β_n
0	a	—	a
1	_	a + c	—
2	2a+c	—	2a+c
3	_	2a + 2c	—
4	4a + 3c	—	4a + 3b
5	_	8a + 6c	—
6	12a + 9c	—	12a + 9c
7	_	24a + 18c	—
8	36a + 27c	—	36a + 27c
9	_	72a + 54c	—
÷		:	÷

35

The two sequences, discussed in [1] and here, can be called 2-Pulsated Fibonacci sequences (from (a, b) and (a, b; c)-types). In a next paper, we will discuss the case with s-Pulsated Fibonacci sequences, where $s \ge 3$.

References

- [1] Atanassov, K., Pulsating Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, Vol. 19, 2013, No. 3, 12–14.
- [2] Atanassov K., V. Atanassova, A. Shannon, J. Turner, *New Visual Perspectives on Fibonacci Numbers*. World Scientific, New Jersey, 2002.