On generalized multiplicative perfect numbers

Bhabesh Das¹ and Helen K. Saikia²

Department of Mathematics, Gauhati University Guwahati-781014, India ¹ e-mail: mtbdas99@gmail.com ² e-mail: hsaikia@yahoo.com

Abstract: In this paper we define T^*T multiplicative divisors function. This notion leads us to generalized multiplicative perfect numbers like T^*T perfect numbers, $k - T^*T$ perfect numbers and T^*_0T -super-perfect numbers. We attempt to characterize these numbers. **Keywords:** Perfect number, Unitary perfect number, Divisor function. **AMS Classification:** 11A25.

1 Introduction

A natural number *n* is said to be perfect number if it is equal to the sum of its proper divisors. If σ denotes the sum of divisors, for any perfect number *n*, $\sigma(n) = 2n$. The Euclid–Euler theorem gives the form of even perfect numbers in the form $n = 2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime. Moreover *n* is said to be super-perfect if $\sigma(\sigma(n)) = 2n$. The Suryana-rayana–Kanold theorem gives the general form of even super-perfect numbers $-n = 2^k$, where $2^{k+1} - 1$ is prime. No odd super-perfect numbers are known. For new proofs of these results, see [5, 9]. A divisor *d* of a natural number *n* is said to be unitary divisor if $(d, \frac{n}{d}) = 1$ and *n* is unitary perfect if $\sigma^*(n) = 2n$, where σ^* denotes the sum of unitary divisors of *n*. The notion of unitary perfect numbers was introduced M. V. Subbarao and L. J. Waren in 1966, [8]. Five unitary even perfect numbers are known and it is true that no unitary perfect numbers of the form $2^m s$ where *s* is a square free odd integer [3]. Sándor in [6] introduced the concept of multiplicatively divisor function T(n) and multiplicatively perfect and super-perfect numbers and characterized them. If T(n) denote the product of all divisors of *n*, then

$$T(n)=\prod_{d\mid n}d=n^{\frac{\tau(n)}{2}},$$

where $\tau(n)$ is the number of divisors of *n*. The number n > 1 is multiplicatively perfect (or shortly m-perfect) if $T(n) = n^2$, and multiplicatively super-perfect (m-super-perfect), if $T(T(n)) = n^2$. In [1], Antal Bege introduced the concept of unitary divisor function $T^*(n)$ and

unitary perfect and super-perfect numbers and characterized them multiplicatively. Let $T^*(n)$ denote the product of all unitary divisors of *n*:

$$T^*(n) = \prod_{d|n} d = n^{\frac{\tau^*(n)}{2}},$$

where $(d, \frac{n}{d}) = 1$ and $\tau^*(n)$ is the number of unitary divisors of *n*. The number n > 1 is multiplicatively unitary perfect (or shortly m-unitary-perfect) if $T^*(n) = n^2$, and multiplicatively unitary super-perfect (m-unitary-super-perfect), if $T^*(T^*(n)) = n^2$. It is to be noted that there are no m-super-perfect and m-unitary-super perfect numbers.

2 T*T-perfect numbers

Definition 2.1. Let $[T^*T](n)$ or $[TT^*](n)$ denote the product of T(n) and $T^*(n)$, i.e. $[T^*T](n) = T^*(n)T(n)$. Let us call the number n > 1 as T^*T -perfect number if $[T^*T](n) = n^2$.

Theorem 2.1. For n > 1 there are no T^*T -perfect numbers for non-prime n.

Proof: Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ be the prime factorisation of n > 1. It is well-known that

$$\tau(n) = (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_r + 1)$$
(2.1)

and

$$\tau^*(n) = 2^{\omega(n)} = 2^r, \tag{2.2},$$

where $\omega(n)$ is the number of distinct prime divisors of *n*.

$$[T * T](n) = T * (n)T(n) = n^{\frac{\tau(n)}{2}} \cdot n^{\frac{\tau^*(n)}{2}} = n^{\frac{\tau(n) + \tau^*(n)}{2}}$$

For T^*T -perfect numbers

$$2^r + (\alpha_1 + 1) (\alpha_2 + 1)...(\alpha_r + 1) = 4.$$

Since $r \ge 1$, we can have only $(\alpha_1 + 1) = 2$ and r = 1, giving $n = p_1$. There are no other solutions n > 1 (n = 1 is a trivial solution) of the equation.

Thus primes are T^*T -perfect numbers.

For any $n \ge 2$ we have $\tau(n) \ge 2$, so $T(n) \ge 2$.

If *n* is not a prime, then it is immediate that $\tau(n) \ge 3$, giving

$$T(n) \ge n^{\frac{3}{2}} \tag{2.3}$$

If *n* is not a prime, then

$$T^*(n) \ge n \tag{2.4}$$

Now relations (2.3) and (2.4) together give $[T^*T](n) \ge n^{\frac{5}{2}}$, where *n* is not a prime. Thus, by $\frac{5}{2} > 2$, there are no T^*T -perfect number for non prime *n*.

Corollary 2.2. Perfect numbers are not *T***T*–perfect numbers.

3 $k-T^*T$ -perfect numbers

In a similar manner, one can define $k-T^*T$ -perfect numbers by $[T^*T](n) = n^k$, where $k \ge 2$ is given. Since the equation $2^r + (\alpha_1 + 1) (\alpha_2 + 1)...(\alpha_r + 1) = 2k$ has a finite number of solutions, the general form of $k-T^*T$ -perfect numbers can be determined. We present certain particular cases in the following result.

Theorem 3.1.

- (i) All tri– T^*T –perfect numbers have the form $n = p_1^3$;
- (ii) All 4–*T***T*–perfect numbers have the form $n = p_1 p_2$ or $n = p_1^5$;
- (ii) All 5–*T***T*–perfect numbers have the form $n = p_1^2 p_2$ or $n = p_1^7$;
- (iv) All 6–*T***T*–perfect numbers have the form $n = p_1^3 p_2$ or $n = p_1^9$;
- (v) All 7–*T***T*–perfect numbers have the form $n = p_1^4 p_2$ or $n = p_1^{11}$;
- (vi) All 8-T*T-perfect numbers have the form $n = p_1 p_2 p_3$ or $n = p_1^5 p_2$ or $n = p_1^3 p_2^2$ or $n = p_1^{13}$;
- (vii) All 9–*T***T*–perfect numbers have the form $n = p_1^6 p_2$ or $n = p_1^{15}$;
- (viii) All 10–*T***T*-perfect numbers have the form $n = p_1^2 p_2 p_3$ or $n = p_1^7 p_2$ or $n = p_1^3 p_2^3$ or $n = p_1^{17}$;
- (ix) All $11-T^*T$ -perfect numbers have the form $n = p_1^5 p_2^2$ or $n = p_1^8 p_2$ or $n = p_1^{19}$;
- (x) All $12-T^*T$ -perfect numbers have the form $n = p_1^3 p_2 p_3$ or $n = p_1^9 p_2$ or $n = p_1^4 p_2^3$ or $n = p_1^{21}$, etc.

Here p_i denote certain distinct primes. We prove only the cases (vi) and (x).

Proof: (vi) For the 8– T^*T –perfect number n, $[T^*T](n) = n^8$, so we must solve the equation

$$2^{r} + (\alpha_{1} + 1) (\alpha_{2} + 1) \dots (\alpha_{r} + 1) = 16$$

in α_r and r. It is easy to see that the following four cases are possible:

- (I) $r = 1, \alpha_1 + 1 = 14;$
- (II) $r = 2, \alpha_1 + 1 = 4, \alpha_2 + 1 = 3;$
- (III) $r = 2, \alpha_1 + 1 = 6, \alpha_2 + 1 = 2;$
- (IV) r = 3, $\alpha_1 + 1 = 2$, $\alpha_2 + 1 = 2$, $\alpha_3 + 1 = 2$.

This gives the general forms of all $8-T^*T$ -perfect numbers, namely:

$$(r = 1, \alpha_1 = 13) \ n = p_1^{13};$$

 $(r = 2, \alpha_1 = 3, \alpha_2 = 2) \ n = p_1^{3} p_2^{2};$

$$(r = 2, \alpha_1 = 5, \alpha_2 = 1) \ n = p_1^5 p_2;$$

 $(r = 3, \alpha_1 = 1, \alpha_2 = 1, \alpha_3 = 1) \ n = p_1 p_2 p_3$

(x) To find the general form of $12-T^*T$ -perfect numbers, we must solve the equation

 $2^{r} + (\alpha_{1} + 1)(\alpha_{2} + 1)...(\alpha_{r} + 1) = 24$

in α_r and r. It is easy to see that the following four cases are possible:

(I)
$$r = 1, \alpha_1 + 1 = 21;$$

(II) $r = 2, \alpha_1 + 1 = 4, \alpha_2 + 1 = 5;$
(III) $r = 2, \alpha_1 + 1 = 10, \alpha_2 + 1 = 2;$
(IV) $r = 3, \alpha_1 + 1 = 3, \alpha_2 + 1 = 2, \alpha_3 + 1 = 2.$
Thus the general forms of all $12-T^*T$ -perfect numbers are namely:
($r = 1, \alpha_1 = 21$) $n = p_1^{21};$
($r = 2, \alpha_1 = 3, \alpha_2 = 4$) $n = p_1^{3} p_2^{4};$
($r = 2, \alpha_1 = 9, \alpha_2 = 1$) $n = p_1^{9} p_2;$
($r = 3, \alpha_1 = 2, \alpha_2 = 1, \alpha_3 = 1$) $n = p_1^{2} p_2 p_3.$

Corollary 3.2. (i) There are no perfect numbers which are $tri-T^*T$ -perfect number.

(ii) n = 6 is the only perfect number which is $4-T^*T$ -perfect number.

(iii) n = 28 is the only perfect number which is $5-T^*T$ -perfect number.

(iv) n = 496 is the only perfect number which is $7-T^*T$ -perfect number.

(v) n = 8128 is the only perfect number which is $9-T^*T$ -perfect number.

Theorem 3.3. Let *p* be a prime, with $2^p - 1$ being a Mersenne prime. Then $n = 2^{p-1}(2^p - 1)$ is the only perfect number which is a $(p + 2) - T^*T$ -perfect number.

Proof: If $n = 2^{p-1}(2^p - 1)$ is an even perfect number, then $\tau(n) = 2p$, $\omega(n) = 2$, $\tau^*(n) = 4$, and so

$$[T * T](n) = n^{\frac{\tau(n) + \tau^*(n)}{2}} = n^{\frac{2p+4}{2}} = n^{p+2}.$$

4 T_0^*T -super-perfect and $k-T_0^*T$ -perfect numbers

Definition 4.1: The number n > 1 is a T^*_0T -super-perfect number if $T^*(T(n)) = n^2$, and $k-T^*_0T$ -perfect number if $T^*(T(n)) = n^k$, where $k \ge 3$.

Theorem 4.2. All T_0^*T -super-perfect numbers have the form $n = p_1^3$, where p_1 is an arbitrary prime.

Proof: First, we determine $T^*(T(n))$:

$$T^{*}(T(n)) = (T(n))^{\frac{\tau^{*}(T(n))}{2}} = (n^{\frac{\tau(n)}{2}})^{\frac{\tau^{*}(T(n))}{2}}$$
(4.1)

$$\tau^{*}(T(n)) = \tau^{*}(n^{\frac{\tau(n)}{2}}) = \tau^{*}(n)$$
(4.2)

From (4.1) and (4.2), $T^*(T(n)) = n^{\frac{\tau(n), \tau^*(n)}{4}}$. By using the relations (2.1) and (2.2), for T^*_0T -super-perfect numbers

$$2^r (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_r + 1) = 8.$$

Since $r \ge 1$, we can have only $\alpha_1 + 1 = 4$ and r = 1, implying $r = 1, \alpha_1 = 3$, i.e. $n = p_1^3$. In a similar manner $k - T^*_0 T$ -perfect numbers can be defined. Since the equation

$$2^r (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_r + 1) = 4k$$

has a finite number of solutions, the general form of $k-T_0^*T$ -perfect numbers can be determined.

Theorem 4.3.

(i) All tri $-T_{0}^{*}T$ -perfect numbers have the form $n = p_{1}^{5}$;

- (ii) All $4-T_0^*T$ -perfect numbers have the form $n = p_1 p_2$ or $n = p_1^7$;
- (iii) All 5– T_0^*T –perfect numbers have the form $n = p_1^9$;
- (iv) All 6– T_0^*T –perfect numbers have the form $n = p_1^2 p_2$ or $n = p_1^{11}$;
- (v) All 7– T_0^*T –perfect numbers have the form $n = p_1^{13}$;
- (vi) All 8– T^*_0T -perfect numbers have the form $n = p_1^3 p_2$ or $n = p_1^{15}$;
- (vii) All 9– T_0^*T –perfect numbers have the form $n = p_1^2 p_2^2$ or $n = p_1^{17}$;
- (viii) All $10-T_0^*T$ -perfect numbers have the form $n = p_1^4 p_2$ or $n = p_1^{19}$;

Proof: We prove only the case (viii). For $10-T_0^*T$ -perfect number $T^*(T(n)) = n^{10}$. We must solve the equation

 $2^{r}(\alpha_{1}+1)(\alpha_{2}+1)...(\alpha_{r}+1)=40$

in *r* and α_r . It is easy to see that the following cases are possible:

- (I) $r = 1, \alpha_1 + 1 = 20.$
- (II) $r = 2, \alpha_1 + 1 = 5, \alpha_2 + 1 = 2.$

This gives the general form of all $10-T_0^*T$ -perfect numbers, namely:

$$(r = 2, \alpha_1 = 4, \alpha_2 = 1) \ n = p_1^4 p_2;$$

 $(r = 1, \alpha_1 = 19) \ n = p_1^{19}.$

Theorem 4.4. Let *p* be a prime, with $2^p - 1$ being a Mersenne prime. Then $2^{p-1}(2^p - 1)$ is the only perfect number, which is $2p-T^*_0T$ -perfect number.

Proof: By writing $2^r (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_r + 1) = 8p$ (where *p* is prime), the following cases are only possible:

(i)
$$r = 2, \alpha_1 + 1 = 2, \alpha_2 + 1 = p$$

(ii)
$$r = 1, \alpha_1 + 1 = 4p$$

Then $n = p_1 p_2^{p-1}$ or $n = p_1^{4p-1}$ are the general form of $2p - T_0^*T$ -perfect numbers. By the Euler-Euclid theorem, $p_1 p_2^{p-1} = 2^{p-1}(2^p - 1)$ iff $p_1 = 2^p - 1$ and $p_2 = 2$.

5 $k-T_0T^*$ -perfect numbers

Definition 5.1. The number n > 1 is a $k - T_0 T^*$ -perfect number (where $k \ge 2$) if $T(T^*(n)) = n^k$.

First, we determine $T(T^*(n))$. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ be the prime factorisation of n > 1, then $\tau^*(n) = 2^r$ and $T^*(n) = n^{2^{r-1}}$.

$$T(T^*(n)) = (T^*(n))^{\frac{\tau(T^*(n))}{2}} = \left(n^{2^{r-1}}\right)^{\frac{\tau\left(n^{2^{r-1}}\right)}{2}} = n^{\frac{2^r \tau\left(n^{2^{r-1}}\right)}{4}}$$
(5.1)

Since $n^{2^{r-1}} = p_1^{\alpha_1 2^{r-1}} p_2^{\alpha_2 2^{r-1}} ... p_r^{\alpha_r 2^{r-1}}$ and $\tau(n)$ is a multiplicative function, so

$$\tau(p_i^{\alpha_i 2^{r-1}}) = \alpha_i 2^{r-1} + 1; \ i = 1, 2, ..., r$$
(5.2)

From the relations (5.1) and (5.2) for $k-T_0T^*$ -perfect number

$$2^{r} (\alpha_{1} 2^{r-1} + 1) (\alpha_{2} 2^{r-1} + 1) \dots (\alpha_{r} 2^{r-1} + 1) = 4k$$
(5.3)

Solving the equation (5.3) in *r* and α_r , we can determine forms of the $k-T_0T^*$ -perfect numbers.

References

- [1] Bege, A. On multiplicative unitary perfect numbers, *Seminar on Fixed point theory*. Cluj-Napoca, 2002, 59–64.
- [2] Graham, S. W. Unitary perfect numbers with square free odd parts, *Fibonacci Quarterly*, Vol. 27, 1989, 317–322.
- [3] Guy, R.K. Unsolved Problems in Number Theory. Springer-Verlag, 2nd ed., 1994.
- [4] Ireland, K., M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982.
- [5] Kanold, H.J. Über super-perfect numbers, *Elem. Math.*, Vol. 24, 1969, 61–62.
- [6] Sándor, J. On multiplicatively perfect numbers, *J. Inequal. in Pure and Appl. Math.*, Vol. 2, 2001, No. 1, Art. 3.
- [7] Sivaramakrishnan, R. *Classical theory of arithmetic functions*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, New-York, 1989.
- [8] Subbarao, M. V., L. J. Warren, Unitary perfect numbers, Canad. Math. Bull., Vol. 9, 1966, 147–153.
- [9] Suryanarayana, D. Super-perfect numbers, *Elem. Math.*, Vol. 24, 1969, 16–17.