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1 Introduction 

A natural number n is said to be perfect number if it is equal to the sum of its proper divisors. 
If σ denotes the sum of divisors, for any perfect number n, σ(n) = 2n. The Euclid−Euler 
theorem gives the form of even perfect numbers in the form n = 2p − 1(2p − 1), where 2p − 1 
is a Mersenne prime. Moreover n is said to be super-perfect if σ (σ (n)) = 2n. The Suryana-
rayana−Kanold theorem gives the general form of even super-perfect numbers −n = 2k, where 
2k+1 – 1 is prime. No odd super-perfect numbers are known. For new proofs of these results, 
see [5, 9]. A divisor d of a natural number n is said to be unitary divisor if ( ) 1, =d

nd  and n is 
unitary perfect if σ*(n) = 2n, where σ* denotes the sum of unitary divisors of n. The notion of 
unitary perfect numbers was introduced M. V. Subbarao and L. J. Waren in 1966, [8]. Five 
unitary even perfect numbers are known and it is true that no unitary perfect numbers of the 
form 2ms where s is a square free odd integer [3]. Sándor in [6] introduced the concept of 
multiplicatively divisor function T(n) and multiplicatively perfect and super-perfect numbers 
and characterized them. If T(n) denote the product of all divisors of n, then 
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where τ(n) is the number of divisors of n. The number n > 1 is multiplicatively perfect 
(or shortly m-perfect) if T(n) = n2, and multiplicatively super-perfect (m-super-perfect), 
if T(T(n)) = n2. In [1], Antal Bege introduced the concept of unitary divisor function T*(n) and 
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unitary perfect and super-perfect numbers and characterized them multiplicatively. Let T*(n) 
denote the product of all unitary divisors of n: 
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where ( ) 1, =d
nd  and τ*(n) is the number of unitary divisors of n. The number n > 1 is multi- 

plicatively unitary perfect (or shortly m-unitary-perfect) if T*(n) = n2, and multiplicatively 
unitary super-perfect (m-unitary-super-perfect), if T*(T*(n)) = n2. It is to be noted that there are 
no m-super-perfect and m-unitary-super perfect numbers. 

2 T*T-perfect numbers 

Definition 2.1. Let [T*T](n) or [TT*](n) denote the product of T(n) and T*(n), i.e. 
[T*T](n) = T*(n)T(n). Let us call the number n > 1 as T*T−perfect number if [T*T](n) = n2. 

Theorem 2.1. For  n > 1 there are no T*T−perfect numbers for non-prime n. 

Proof: Let 1 2
1 2 ...... r

rn p p pα α α= be the prime factorisation of n > 1. It is well-known that 

 τ(n) = (α1 + 1) (α2 + 1)…(αr + 1) (2.1) 
and 
 ,22)(* )( rnn == ωτ  (2.2),   

where ω (n) is the number of distinct prime divisors of n. 
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For T*T−perfect numbers 

2r + (α1 + 1) (α2 + 1)…(αr + 1) = 4. 

Since r ≥ 1, we can have only 1( 1) 2α + =  and r = 1, giving n = p1. There are no other 

solutions  n > 1 (n = 1 is a trivial solution) of the equation. 
Thus primes are T*T−perfect numbers.  
For any n ≥ 2 we have τ(n) ≥ 2, so T(n) ≥ 2. 
If n is not a prime, then it is immediate that τ(n) ≥ 3, giving 

 2
3

)( nnT ≥   (2.3) 
        If n is not a prime, then  
 T*(n) ≥ n (2.4) 

Now relations (2.3) and (2.4) together give [T*T](n) 2
5

n≥ , where n is not a prime. 
Thus, by ,22

5 >  there are no T*T−perfect number for non prime n.  

 
Corollary 2.2. Perfect numbers are not T*T−perfect numbers. 
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3 k−T*T−perfect numbers 

In a similar manner, one can define k−T*T−perfect numbers by [T*T](n) = nk, where k ≥ 2 is 
given. Since the equation 2r + (α1 + 1) (α2 + 1)…(αr + 1) = 2k  has a finite number of solutions, 
the general form of k−T*T−perfect numbers can be determined. We present certain particular 
cases in the following result. 

Theorem 3.1. 

(i) All tri−T*T−perfect numbers have the form 3
1n p= ; 

(ii) All 4−T*T−perfect numbers have the form 1 2n p p=   or 5
1n p= ; 

(ii) All 5−T*T−perfect numbers have the form 2
1 2n p p=  or 7

1n p= ; 

(iv) All 6−T*T−perfect numbers have the form 3
1 2n p p=  or 9

1n p= ; 

(v) All 7−T*T−perfect numbers have the form 4
1 2n p p=  or 11

1n p= ; 

(vi) All 8−T*T−perfect numbers have the form 1 2 3n p p p=  or 5
1 2n p p=  or 3 2

1 2n p p=  or 
13

1n p= ; 

(vii) All 9−T*T−perfect numbers have the form 6
1 2n p p=  or 15

1n p= ; 

(viii) All 10−T*T−perfect numbers have the form 2
1 2 3n p p p= or 7

1 2n p p=  or 3 3
1 2n p p=  or 

17
1n p= ; 

(ix) All 11−T*T−perfect numbers have the form 5 2
1 2n p p=  or 8

1 2n p p= or 19
1n p= ; 

(x) All 12−T*T−perfect numbers have the form 3
1 2 3n p p p=  or 9

1 2n p p=  or 4 3
1 2n p p=  or 

21
1n p= , etc. 

Here ip  denote certain distinct primes. We prove only the cases (vi) and (x). 

Proof: (vi) For the 8−T*T−perfect number n, [T*T](n) = n8, so we must solve the equation  

2r + (α1 + 1) (α2 + 1)…(αr + 1) = 16 

in αr and r. It is easy to see that the following four cases are possible: 

(I) r = 1, 1 1α +  = 14 ; 

(II) r = 2, 1 1α +  = 4, 2 1α + =  3; 

(III) r = 2, 1 1α + = 6, 2 1α + =  2; 

(IV) r = 3, 1 1α + = 2, 2 1α + = 2, 3 1α + = 2. 

This gives the general forms of all 8−T*T−perfect numbers, namely: 

1( 1, 13)r α= = 13
1n p= ; 

1 2( 2, 3, 2)r α α= = = 3 2
1 2n p p= ; 
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1 2( 2, 5, 1)r α α= = = 5
1 2n p p= ; 

1 2 3( 3, 1, 1, 1)r α α α= = = = 1 2 3n p p p= . 

(x) To find the general form of 12−T*T−perfect numbers, we must solve the equation  
2r + (α1 + 1) (α2 + 1)…(αr + 1) = 24 

in αr and r. It is easy to see that the following four cases are possible: 

(I) r = 1, α1 + 1 = 21; 

(II) r = 2, α1 + 1 = 4, α2 + 1 = 5; 

(III)  r = 2, α1 + 1 = 10, α2 + 1 = 2; 

(IV)  r = 3, α1 + 1 = 3, α2 + 1 =  2, α3 + 1 = 2. 

Thus the general forms of all 12−T*T−perfect numbers are namely: 

1( 1, 21)r α= = 21
1n p= ;  

1 2( 2, 3, 4)r α α= = = 3 4
1 2n p p= ;  

1 2( 2, 9, 1)r α α= = = 9
1 2n p p= ; 

1 2 3( 3, 2, 1, 1)r α α α= = = = 2
1 2 3n p p p= .  

Corollary  3.2. (i) There are no perfect numbers which are tri−T*T−perfect number. 

(ii) n = 6 is the only perfect number which is 4−T*T−perfect number. 

(iii) n = 28 is the only perfect number which is 5−T*T−perfect number. 

(iv) n = 496 is the only perfect number which is 7−T*T−perfect number. 

(v) n = 8128 is the only perfect number which is 9−T*T−perfect number. 

Theorem 3.3. Let p be a prime, with 2p – 1 being a Mersenne prime. Then n = 2p – 1(2p – 1) is 
the only perfect number which is a (p + 2)−T*T−perfect number. 

Proof: If n = 2p – 1(2p – 1) is an even perfect number, then τ (n) = 2p, ω (n) = 2, τ * (n) = 4, 
and so 

 22
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4 T*0T−super-perfect and k−T*0T−perfect numbers 

Definition 4.1: The number  n > 1 is a T*0T−super-perfect number if T*(T(n)) = n2, and 
k−T*0T−perfect number if T*(T(n)) = nk, where k ≥ 3. 

Theorem 4.2. All  T*0T−super-perfect numbers have the form 3
1n p= , where 1p is an arbitrary 

prime. 

Proof: First, we determine T*(T(n)) : 
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From (4.1) and (4.2), 4
)(*).(

))((*
nn

nnTT
ττ

= . By using the relations (2.1) and (2.2), for 
T*0T−super-perfect numbers 

2r (α1 + 1) (α2 + 1)…(αr + 1) = 8. 

Since r ≥ 1, we can have only 1 1 4α + =  and 1r = , implying 11, 3r α= = , i.e. 3
1n p= . In a 

similar manner k−T*0T−perfect numbers can be defined. Since the equation 

2r (α1 + 1) (α2 + 1)…(αr + 1) = 4k 

has a finite number of solutions, the general form of k−T*0T−perfect numbers can be 
determined.  
 

Theorem 4.3. 
(i) All tri−T*0T−perfect numbers have the form 5

1n p= ; 

(ii) All 4−T*0T−perfect numbers have the form 1 2n p p=  or 7
1n p= ; 

(iii) All 5−T*0T−perfect numbers have the form 9
1n p= ; 

(iv) All 6−T*0T−perfect numbers have the form 2
1 2n p p=  or 11

1n p= ; 

(v) All 7−T*0T−perfect numbers have the form 13
1n p= ; 

(vi) All 8−T*0T−perfect numbers have the form 3
1 2n p p=  or 15

1n p= ; 

(vii) All 9−T*0T−perfect numbers have the form 2 2
1 2n p p= or 17

1n p= ; 

(viii) All 10−T*0T−perfect numbers have the form 4
1 2n p p= or 19

1n p= ; 

Proof: We prove only the case (viii). For 10−T*0T−perfect number T*(T(n)) = n10. We must 
solve the equation 

2r (α1 + 1) (α2 + 1)…(αr + 1) = 40 

in r and αr. It is easy to see that the following cases are possible: 

(I) r = 1, α1 + 1 = 20. 

(II) r = 2, α1 + 1 = 5, α2 + 1 = 2. 

This gives the general form of all 10−T*0T−perfect numbers, namely: 

1 2( 2, 4, 1)r α α= = = 4
1 2n p p= ; 

1( 1, 19)r α= = 19
1n p=  .  

Theorem 4.4. Let p be a prime, with 2p − 1 being a Mersenne prime. Then 2p − 1(2p − 1) is the 
only perfect number, which is 2p−T*0T−perfect number. 

Proof: By writing 2r (α1 + 1) (α2 + 1)…(αr + 1) = 8p (where p is prime), the following cases are 
only possible: 
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(i) r = 2, 1 1 2α + =  , 2 1 pα + =  

(ii) r = 1, 1 1 4 pα + =  

Then 1
1 2

pn p p −=  or 4 1
1

pn p −=  are the general form of 2p−T*0T−perfect numbers. By the 

Euler−Euclid theorem, )12(2 11
21 −= −− ppppp  iff  p1 = 2p − 1 and 2 2p = .  

5 k−T0T*−perfect numbers 

Definition 5.1. The number  n > 1 is a k−T0T*−perfect number (where k ≥ 2) if T(T*(n)) = nk. 
 

First, we determine T(T*(n)). Let r
rpppn ααα ...21

21= be the prime factorisation of n > 1, then 

τ *(n) = 2r and .)(*
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Since 
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rpppn ααα  and τ (n) is a multiplicative function, so 

 
12 1( ) 2 1

r
i r

i ip ατ α
− −= + ;  i = 1, 2, …, r (5.2) 

From the relations (5.1) and (5.2) for k−T0T*−perfect number 

 2r (α12r–1 + 1) (α22r–1 + 1)…(αr2r–1 + 1) = 4k (5.3) 

Solving the equation (5.3) in r and αr, we can determine forms of the k−T0T*−perfect 
numbers. 

References 

[1] Bege, A. On multiplicative unitary perfect numbers, Seminar on Fixed point theory. Cluj-
Napoca, 2002, 59–64. 

[2] Graham, S. W. Unitary perfect numbers with square free odd parts, Fibonacci Quarterly, 
Vol. 27, 1989, 317–322. 

[3] Guy, R.K. Unsolved Problems in Number Theory. Springer-Verlag, 2nd ed., 1994. 

[4] Ireland, K., M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 
1982. 

[5] Kanold, H.J. Über super-perfect numbers, Elem. Math., Vol. 24, 1969, 61–62. 

[6] Sándor, J. On multiplicatively perfect numbers, J. Inequal. in Pure and Appl. Math., 
Vol. 2, 2001, No. 1, Art. 3. 

[7] Sivaramakrishnan, R. Classical theory of arithmetic functions, Monographs and Text-
books in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, New-York, 1989. 

[8] Subbarao, M. V., L. J. Warren, Unitary perfect numbers, Canad. Math. Bull., Vol. 9, 
1966, 147–153. 

[9] Suryanarayana, D. Super-perfect numbers, Elem. Math., Vol. 24, 1969, 16–17. 


