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1 Introduction

Let (a,) be a sequence. In [2], the Euler—Seidel matrix associated with this sequence is deter-
mined recursively by the formula

a, = a, (n>0)

af Tt vadil >0, k>1). (1)

IS &> 3O

a

From relation (1), it can be seen that the first row and the first column can be transformed into
each other via the well known binomial inverse pair as,

ag = Z(Z)ai 2)



@ = (Z)( 1" Haf. 3)
k=0

Also any entry a® can be written in terms of the initial sequence as:

s (e

=0
Proposition 1. (Euler) [4] Let

a(t) =Y alt"
n=0

be the generating function of the initial sequence (a°). Then the generating function of the se-

nyn _ o
Zaot 4 (1—2&)' )

quence (ap)) is

Proposition 2. (Seidel) [9] Let

o0 tn
Al =Y ah
n=0 ’

be the exponential generating function of the initial sequence (a2). Then the exponential gener-
ating function of the sequence (ay) is

[eS) ntn
= ZOG,OE = etA(t) (6)

In fact, it is possible to state a more general result than (6). The following equation gives
relation between exponential generating function of columns (or rows) with the exponential gen-
erating function of the initial sequence (see [2]).

iia A(t+u). @)

n=0 k=0

In [7] there are applications of Euler—Seidel matrix for hyperharmonic and r—Stirling num-
bers. Also authors introduced ”symmetric infinite matrix” and give some applications in [3].
In [5] the generalized second order recurrence sequence {W, (a, b; p, q)} is defined as
forn >0
Wiyo = oW1 — W, ()

with initial conditions

where p* — 4¢g > 0. Let the roots of the equation t* — pt + q =
f=—r— p ~% Then W,, can be written in the form
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W, = Aa™ + Bj", ®)

where A = a2 b . The following generating functions of {I,,} are given in [6, 8]
as: -
and -
> an = Ae® + BeP. (11)
n=0

Mez6 gave the generating functions of the general second-order recurrence relations in [8].
Here, we get some relation and generating functions of the general second-order recurrence rela-
tions by using generalized Euler—Seidel matrices.

The special cases of {W,, (a, b; p, q)} give Fibonacci numbers F,, (Oeis A000045), Lucas
numbers L,, (Oeis A000032), Pell numbers (or Silver Fibonacci numbers) P, (Oeis A000129),
Pell-Lucas numbers (),, (Oeis A002203), Jacobsthal numbers J,, (Oeis A001045), Jacobsthal—
Lucas numbers j, (Oeis A014551), Bronze Fibonacci numbers B, (Oeis A006190), Signed
Fibonacci numbers F,, (Oeis A039834), Signed Pell numbers P,, (Oeis A215936 ).

Also we get the sequences; D,,: denominators of continued fraction convergents to /5
(Oeis A001076) and N,,: numerators of continued fraction convergents to V2 (Oeis A001333) as
follows:

W, (0, 1; 1, ~1)=F,,  Wn(2, 1; 1, ):
W, (0, 1; 2, —1) = P,, W, (2, 2 2, —1) =
W, (0, 1; 1, =2) = J,, W, (2, 1; 17 ):]
W, (0, 1; 3, —1) =By,  Wo(l, 1; -1, —1) =
W, (0, 1;,-2, —1) =P, W (0, 1; 4, —1) —D,,
W, (1, 1; 2, —1) = N,

2 Generalized Euler—Seidel matrices
with two parameters

In this section, we consider the generalized Euler—Seidel matrix, which is given in [1] with pa-
rameters x, y. We obtain the connection between the generating functions of the initial sequence
and the first column entries of the generalized Euler—Seidel matrices.

Let us consider a given sequence (a,),>0. Generalized Euler-Seidel matrix with parameters
x and y (see [1]) corresponding to this sequence is recursively defined by the formulae

a = a, (n>0) (12)
af (v,y) = zai ™' +yakl] (n>0, k> 1positive integers).
where a” represents the k-th row and n-th column entry and z and y are nonzero real parameters;

1.€;
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From now on for the sake of simplicity we represent a® (1) with aF.
The following proposition gives the relation between the any entry of the matrix and the initial
sequence.

Proposition 3. /1] We have

k
k o
k k—i, i .0
= E . 13
CLn P (Z) 'y Yy an—l—z ( )
Proof. By induction on n + k. ]

The first row and column can be transformed into each other via the well known binomial
inverse pair as follows.

Corollary 4.

an = " ("> (%) o (14)
i—0 1 xXr

a) = in (n) (—2)" " ai. (15)

Generating Functions. We give connections between the generating functions of the initial

and

sequences and the first column entries.

Proposition 5. The recurrence (12) gives the following relation:

1
Ty () = Ly ( vt ) (16)

1—uxat 1 —at
where . -
Uy y (1) = Z agt" and ag, (t) = Z adt"
n=0 n=0




By changing the order of the above sums and using Newton binomial sums formula we obtain

) = (4 > (") e

This completes the proof. [
Now we give the generalization of the equation (7).

Proposition 6. For the a* entries of the Generalized Euler-Seidel Matrices we have:

D) B

n=0 k=0
where
=t
_ 0~
Ay, (1) = ngzo a”n!'

Proof. Using (13) we have

0o 00 k k o ’Lbktn 00 k :L‘ 0o
I ol ERCES v ok

n=0 k=0

If we write RHS by means of Cauchy product we get:

e U O () N o Y ()"
> Dol T > Ll > Uiy ) g

n=0 k=0 k=0 T n=0

We can equally well write the last sum in the form A, , (¢ + yu), which completes the proof. [

The following corollary also provides the connection between the exponential generating
functions of the initial sequence and the first column entries.

Corollary 7. [1] The following relation holds:

Agy (1) = €™ Agy (yt) (17)
where
A t—oo n d A t—oo ol
x,y()—;aom and Ay, (t) = > ny

3 Applications of generalized Euler—Seidel matrix

In this section, we show that the generalized Euler—Seidel method is useful to obtain some prop-
erties of the generalized second order recurrence relation.
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Proposition 8.
k
Wson = ; (Z> (=) P Wass. (18)
Proof. By setting z = —q and y = p in (12), we obtain

a, = —qa,”" +pa;7y. (19)
For a® = W,,, n > 0. We can write a} = W, 5. By induction on k and using equation (19), we
obtain a’fL = W, +2r. Now considering equation (13) for v = —q and y = p, we have
/g ‘
af =Y (Z) (=) " plap,
i=0
Then we obtain i
Witor = z; (z) (—q)" p"Wayi.
This completes the proof. O]

Using (18), we get the following identities of the Fibonacci numbers F},, Lucas numbers L,,,
Pell numbers P, Pell-Lucas numbers (),,, Jacobsthal numbers .J,,, Jacobsthal-Lucas numbers j,,,
Bronze Fibonacci numbers 5,,, Signed Fibonacci numbers F,,, Signed Pell numbers P,,, and also
D,, and N,, numbers

Fryor = 2t (3) Futis Luyor = 2ig (5) Lo,

Poyor = g ()27 Pus, Qnize = Yo (1) 2'Qunsi,
Tsor = 2o ()25 g, dnvor = i (5) 26 s,

By tor = Zf:o (l:) 3 B, Frtok = Zf:o (lf) (_1)i Fovis

Pryor = Zf:o (I;) (_2)i Prti, Dyior = Zf:o (];) 4iDn+i>

Nnyor = Z?:o (I:) 2" N -

Corollary 9.
. n n—i 4
W= 3 (1) oy, 0)
i—0 \!
1 - n n—i
W, =— () (@) Wy 2D
Py \?
and .
n n—i g
Woni1 = (2> (—a)" " p' Wi, (22)
=0
1 —/n-1 i
W= > (Z B 1) (@)" ™ Waiy. (23)



From (20), we obtain some formulas for these well-known sequences by the new method.
Fon =310 () B, Lon = Y1 (5) L,
Py =31 (1)2'P, Qan = Y i (5)2'Qi
Ton = 321 ()27, Jon = im0 (7)2" i
Ban = 3210 (1)3'B:, Fon =300 (7) (1) F
Pon =300 () (=2)'Pi,  Daw=31, (14D,

Now =300 (7)2°N;.

Here with help of equation (21), we have following identities:
Fo=300 () (1) Py, Lo =31 (7) (#1)"" Las,
Po= 530 () (Z)"" Pas, Qn =5 20 (1) (1) Qa,
Jn =0 (1) (=2)" 7 s, n =200 (1) (=2)" jas,

Bu=5 3 () (C10)" " Buy Fa=301(7) (-1 P

Po =52 21 (7) (=) P Dy =3 2o (7) ()" D
No= 32200 (7) (1) Na.
We show from (22)
Fopi =20 (7) Fivn,s Lop1 = i (1) Lisr,
Popi1 =330 (7)2° P, Qani1 =i (7)2'Qis,
Jangr = 2o (3)2" i, Jont1 = 2oro (1) 2 i,
Bon1 = iy (7)3' B, Fonir = 2y (5) (=1)' Figa,

Pont1 = i (%) (—2)' Py, Dang1 = > iy (7) 4" Diya,

Nopy1 = 0 ( )2 Niy1.
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The similar results obtained from equation (23):

Fo=300 (50 (G0 Faiy,
Po = g 20 (7)) (F1)" P,
Jo =30 (10) (2" Jaia,s

By =g i (1) (=

P = 2"%1 Z?:l (7::11) (—

1)7L—i B2i717
1)1_i 7321‘—17

) (1) Ny

n — gn-1 1=1 (i—l

Ly =30 (i20) (Z1)" Lo,
Qn = gt 2y (21) (1) Qaiy,
gn =Yy (1)) (—=2)"" jai_1,

Fo=30 () (517 Foica,

Dy = gt iy (?:11) (=1)""" Dy,

4 Some results on generating functions

4.1 Results on ordinary generating functions

Proposition 10. Generating function of the even W,, numbers is

Z Wgntn -

a(l+qt)+

(b —pa)pt.

Proof. Firstly we realize that by setting a® = W,, in GES we get aly

by considering (16) we have

Qa—q, p

Also we know from equation (10)

a—g, p(

which completes the proof.

(1+qt)* — pt

ZWt"—

(24)

= Wy, (see Eq. (19). Here

pt
§ Wont" = ——a_g p [ —— ) .
2 1+qt q’p(l—i—qt)

a+ (b—pa)t
1 —pt + qt?

]

Using (24), we obtain the generating functions of the Fibonacci numbers F,,, Lucas numbers

L,,, Pell numbers P,, Pell-Lucas numbers (),,, Jacobsthal numbers .J,,, Jacobsthal-Lucas numbers

Jn, Bronze Fibonacci numbers B,,, Signed Fibonacci numbers F,,, Signed Pell numbers P,,, and

also D,, and V,, numbers, respectively.
oo n __ t
ano Font™ = 1—3t+t2>

e e} n __ 2t
ano Pyt = 1—6t+t2°
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Zn:() LGt — 1-3t+t2

[e%) 2—6t
> om0 Qant™ = 50,



o0 n_ __ t o soogn . _ 25t
ano Jont" = 1—5¢+4¢27 ano Janl" = 1—5t+4t2°
00 n _ 3t o0 n _ _1-3t
ano Bont™ = 1—11t+t2 En:O Fonl™ = 1—3t+t27
o] n __ —2t 0 n __ 4t
ano Pont™ = 1—6t+t27 ano Dopt™ = 1—18t+¢2

ee} n_ 1-3t
ano Nopt" = 1—6t+t2°

Proposition 11. Generating function of the odd W,, numbers is

- b— 1+ qt
S Wont” = (b — pa) ( il ) +ap. 25)
n=0 (1 + qt) - p2t

Proof. In view of the recurrence (8) we have,

Z Woppat" = 11) Z Woniat™ +q Z Wont"
n=0 n=0 n=0

Employing (24) on the right in the above equation we obtain (25) . O

From (25), we get the generating functions for odd indexed of these well-known sequences.

oo Pttt = s Xl Leentt” = i
S om0 Poniit" = =51 Yoo Qanit" = 2,
ZZO:Q J2n+1tn = %7 Ezo:O j2n+1tn = %7
Yoo Bt = 5, Yaso Pl = e
onto Pt = morm Xno Donnt?” = g

[e’e] n __ 1+t
ano N2n+1t T 1-6t4+t2-

4.2 Results on exponential generating functions

Proposition 12. Exponential generating function of the Ws,, numbers is
> W — Aclor-0t 4 Ber-ar, (26)
— n!
Proof. For a® = W,, in GES we get ajl = W, (see Eq. (19)). Using equation (11) we get
— > o N
A_,,(t) = Z Wgna =e @ (Ae Pt Beﬁpt) ,
n=0

which completes the proof. [

29



From (26)

S

34vE), (3-vE),
52, Bty = ) )

S

5 3—

ZZOZOL%ﬁ:e(H? )t+e( 2 )t’

n!

S

) P mo e(3+2x/§)t_e(3—2\/§)t
Zn:() 2nm — 2\/5 ;

Do Qan'y = e(3+2v2)t 4 6(372«/5)7&7

o0 tnv 64t—6t
ano J2nm = T3

o) T’ "
S g ot = €'+ €,

114313 . 11-3v13 )
Sty = LA

V5 315
e e g )
(3—2v2)t_ (3+2v2)t
ZZO:O ’PQn% =< 2\/% ,
n (9+4v3B)t_ (9-4V5)t
2o Dony = 25 )

o0 N o 6(3—2\/§)t+e(3+2\/§)t
Zn:() 2nm - 2

Proposition 13. Exponential generating function of the Ws,, .1 numbers is

oo tn
Z W2n+1—' ey A (p I g) e(OlP*Q)t + B (p _ g) e(,@pfq)t'
=0 n: o ﬁ

Remark 14. For the sake of simplicity we use the following representation in the proof:

W, (t) = 7; W — and W, () = nzg Wani1—.

Proof. From equation (8) we have
Wo (t) —b=pW, () —pa—q/Wo(t)dt.

This, combined with (26) to gives

d L g pelor-at o Bolor-ar

Ly, (1) + W, (1) = pt { Acler-t 4 petév-an)

dt dt

30
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Hence we have the following differential equation:
Wo (1) +aW, (t) = Ap (ap — q) P~ + Bp (Bp — q) e~
The solution of this linear differential equation is:
W,(t)=A ( - g) elor=9t 1 p (p - %) PPt 4 Ked,
Considering W, (0) = b we calculate the constant K as

bi—A(p—%)—B(p—%)zO.

Combining these results and after some rearrangement we complete the proof.

Using (26)

~ i (H\/g)e(“zﬁ)l(lf\/g)e(3_2“5)’5
Zn:O an"‘lm = 245 )

3+v5 3-v5
00 n 1—{—\/5 e( 2 )t—f— 1—\/5 e( 2 )t
S Ly &2 = U5 +(1=v5) ,

. n 142)e(312V2)t (1 /2)(3-2V2)t
5 Py = (A (o

ZZO:() Q2n+1% = (1 + \/5) e<3+2\/§)t + (1 _ \/§) 6(372\/5)2
) n edt et

&) . tmo_ 4t t
Zn:0]2n+lm =2e" — ¢,

o o vE ) ()
Zn:() BQn—&—lm = 2\/ﬁ ,
= V5
00 tn (\/5+1)e<3 2\/g)t+(\/5—1)e(3+2 5>t
00 n \/ifl 6(372\/§)t— \/§+1 e(3+2\/§)t
St Pongly = L)
[e'e) n 245 e(9+4\/g)t, 2.5 6(974\/§)t
anO DQn—i—lfl_! - ( ) 2\/§ ) ’
(1+\/§>€(3+2\/§)t+(1_\/5)6(372\/§)t

o0 o
ano N2n+lm - P}
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