Generalized Euler–Seidel method for second order recurrence relations

M. Cetin Firengiz1,* and A. Dil2

1 Department of Mathematics Education, Başkent University
Baglica 06810 Ankara, Turkey
e-mail: mcetin@baskent.edu.tr

2 Department of Mathematics, Akdeniz University
07058 Antalya, Turkey
e-mail: adil@akdeniz.edu.tr

* Corresponding author

Abstract: We obtain identities for the generalized second order recurrence relation by using the generalized Euler–Seidel matrix with parameters x, y. As a consequence, we give some properties and generating functions of well-known special integer sequences.

Keywords: Generalized Euler–Seidel matrix, Fibonacci sequence, Lucas sequence, Pell sequence, Jacobsthal sequence, Generating function.

AMS Classification: 11B39, 11B83.

1 Introduction

Let (a_n) be a sequence. In [2], the Euler–Seidel matrix associated with this sequence is determined recursively by the formula

\[
\begin{align*}
a_n^0 &= a_n \quad (n \geq 0) \\
a_n^k &= a_{n-1}^{k-1} + a_{n+1}^{k-1} \quad (n \geq 0, \ k \geq 1).
\end{align*}
\]

From relation (1), it can be seen that the first row and the first column can be transformed into each other via the well known binomial inverse pair as,

\[
a_0^n = \sum_{k=0}^{n} \binom{n}{k} a_0^k.
\]
\[a^0_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} a^k_0. \] (3)

Also any entry \(a^k_n \) can be written in terms of the initial sequence as:

\[a^k_n = \sum_{i=0}^{k} \binom{k}{i} a^0_{n+i}. \] (4)

Proposition 1. (Euler) [4] Let

\[a(t) = \sum_{n=0}^{\infty} a^0_n t^n \]

be the generating function of the initial sequence \((a^0_n) \). Then the generating function of the sequence \((a^n_0) \) is

\[\overline{a}(t) = \sum_{n=0}^{\infty} a^n_0 t^n = \frac{1}{1-t} a \left(\frac{t}{1-t} \right). \] (5)

Proposition 2. (Seidel) [9] Let

\[A(t) = \sum_{n=0}^{\infty} a^0_n \frac{t^n}{n!} \]

be the exponential generating function of the initial sequence \((a^0_n) \). Then the exponential generating function of the sequence \((a^n_0) \) is

\[\overline{A}(t) = \sum_{n=0}^{\infty} a^n_0 \frac{t^n}{n!} = e^t A(t). \] (6)

In fact, it is possible to state a more general result than (6). The following equation gives relation between exponential generating function of columns (or rows) with the exponential generating function of the initial sequence (see [2]).

\[\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a^k_n \frac{u^k t^n}{k! n!} = e^{u A (t + u)}. \] (7)

In [7] there are applications of Euler–Seidel matrix for hyperharmonic and \(r \)-Stirling numbers. Also authors introduced "symmetric infinite matrix" and give some applications in [3].

In [5] the generalized second order recurrence sequence \(\{W_n (a, b; p, q)\} \) is defined as for \(n \geq 0 \)

\[W_{n+2} = pW_{n+1} - qW_n \] (8)

with initial conditions

\[W_0 = a, \quad W_1 = b, \]

where \(p^2 - 4q > 0 \). Let the roots of the equation \(t^2 - pt + q = 0 \) be \(\alpha = \frac{p + \sqrt{p^2 - 4q}}{2} \) and \(\beta = \frac{p - \sqrt{p^2 - 4q}}{2} \). Then \(W_n \) can be written in the form
where $A = \frac{b-a\beta}{a-\beta}$ and $B = \frac{aa-b}{a-\beta}$. The following generating functions of \{W_n\} are given in [6, 8] as:

$$
\sum_{n=0}^{\infty} W_n t^n = \frac{a + (b - pa) t}{1 - pt + qt^2}
$$

and

$$
\sum_{n=0}^{\infty} W_n n^n/n! = Ae^{\alpha t} + Be^{\beta t}.
$$

Mezö gave the generating functions of the general second-order recurrence relations in [8]. Here, we get some relation and generating functions of the general second-order recurrence relations by using generalized Euler–Seidel matrices.

The special cases of \{W_n (a, b; p, q)\} give Fibonacci numbers F_n (Oeis A000045), Lucas numbers L_n (Oeis A000032), Pell numbers (or Silver Fibonacci numbers) P_n (Oeis A000129), Pell–Lucas numbers Q_n (Oeis A002203), Jacobsthal numbers J_n (Oeis A001045), Jacobsthal–Lucas numbers j_n (Oeis A014551), Bronze Fibonacci numbers B_n (Oeis A006190), Signed Fibonacci numbers F_n (Oeis A039834), Signed Pell numbers P_n (Oeis A215936).

Also we get the sequences; D_n: denominators of continued fraction convergents to $\sqrt{5}$ (Oeis A001076) and N_n: numerators of continued fraction convergents to $\sqrt{2}$ (Oeis A001333) as follows:

\[
\begin{align*}
W_n (0, 1; 1, -1) &= F_n, & W_n (2, 1; 1, -1) &= L_n, \\
W_n (0, 1; 2, -1) &= P_n, & W_n (2, 2; 2, -1) &= Q_n, \\
W_n (0, 1; 1, -2) &= J_n, & W_n (2, 1; 1, -2) &= j_n, \\
W_n (0, 1; 3, -1) &= B_n, & W_n (1, 1; -1, -1) &= F_n, \\
W_n (0, 1; -2, -1) &= P_n, & W_n (0, 1; 4, -1) &= D_n, \\
W_n (1, 1; 2, -1) &= N_n.
\end{align*}
\]

2 Generalized Euler–Seidel matrices with two parameters

In this section, we consider the generalized Euler–Seidel matrix, which is given in [1] with parameters x, y. We obtain the connection between the generating functions of the initial sequence and the first column entries of the generalized Euler–Seidel matrices.

Let us consider a given sequence $(a_n)_{n \geq 0}$. Generalized Euler–Seidel matrix with parameters x and y (see [1]) corresponding to this sequence is recursively defined by the formulae

\[
\begin{align*}
a_n^0 &= a_n \quad (n \geq 0) \\
axk &= xax^{-1} + ya_{n+1}^{-1} \quad (n \geq 0, k \geq 1 \text{ positive integers}).
\end{align*}
\]

where a_n^k represents the k-th row and n-th column entry and x and y are nonzero real parameters; i.e;
From now on for the sake of simplicity we represent \(a^k_n (x, y) \) with \(a^k_n \).

The following proposition gives the relation between the any entry of the matrix and the initial sequence.

Proposition 3. [1] We have

\[
a^k_n = \sum_{i=0}^{k} \binom{k}{i} x^{k-i} y^i a^0_{n+i}.
\]

(13)

Proof. By induction on \(n+k \). \(\Box \)

The first row and column can be transformed into each other via the well known binomial inverse pair as follows.

Corollary 4.

\[
a^0_n = x^n \sum_{i=0}^{n} \binom{n}{i} \left(\frac{y}{x} \right)^i a^0_{n+i}.
\]

(14)

and

\[
a^0_n = \frac{1}{y^n} \sum_{i=0}^{n} \binom{n}{i} (-x)^{n-i} a^i_0.
\]

(15)

Generating Functions. We give connections between the generating functions of the initial sequences and the first column entries.

Proposition 5. The recurrence (12) gives the following relation:

\[
\overline{a}_{x,y}(t) = \frac{1}{1 - xt} a_{x,y} \left(\frac{yt}{1 - xt} \right)
\]

(16)

where

\[
\overline{a}_{x,y}(t) = \sum_{n=0}^{\infty} a^0_n t^n \quad \text{and} \quad a_{x,y}(t) = \sum_{n=0}^{\infty} a^0_n t^n.
\]

Proof. Considering (12) we write

\[
\overline{a}_{x,y}(t) = \sum_{n=0}^{\infty} \left(\sum_{r=0}^{n} \binom{n}{r} x^{n-r} y^r a^0_r \right) t^n.
\]
By changing the order of the above sums and using Newton binomial sums formula we obtain

\[
\overline{a}_{x,y}(t) = \sum_{r=0}^{\infty} \left(\frac{y}{x} \right)^r a^0_r \sum_{n=0}^{\infty} \binom{n+r}{r} (xt)^{n+r}
\]

\[
= \frac{1}{1-xt} \sum_{r=0}^{\infty} a^0_r \left(\frac{yt}{1-xt} \right)^r.
\]

This completes the proof. \qed

Now we give the generalization of the equation (7).

Proposition 6. For the \(a_k^n\) entries of the Generalized Euler–Seidel Matrices we have:

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_k^n \frac{u^k t^n}{k! n!} = e^{xu} A_{x,y} \left(t + yu \right)
\]

where

\[
A_{x,y}(t) = \sum_{n=0}^{\infty} a^0_n \frac{t^n}{n!}.
\]

Proof. Using (13) we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} \binom{k}{i} x^{k-i} y^i a^0_{n+i} \right) \frac{u^k t^n}{k! n!} = \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{x^{k-i} u^{k-i}}{(k-i)!} \sum_{n=0}^{\infty} a^0_{n+i} \frac{t^n}{n!} \frac{(yu)^i}{i!}.
\]

If we write RHS by means of Cauchy product we get:

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_k^n \frac{u^k t^n}{k! n!} = \sum_{k=0}^{\infty} \frac{(xu)^k}{k!} \sum_{n=0}^{\infty} \frac{a^0_{n+k} t^n}{n!} \frac{(yu)^k}{k!}.
\]

We can equally well write the last sum in the form \(A_{x,y}(t + yu)\), which completes the proof. \qed

The following corollary also provides the connection between the exponential generating functions of the initial sequence and the first column entries.

Corollary 7. \([1]\) The following relation holds:

\[
\overline{A}_{x,y}(t) = e^{xt} A_{x,y}(yt)
\]

where

\[
\overline{A}_{x,y}(t) = \sum_{n=0}^{\infty} a^0_n \frac{t^n}{n!} \quad \text{and} \quad A_{x,y}(t) = \sum_{n=0}^{\infty} a^0_n \frac{t^n}{n!}.
\]

3 Applications of generalized Euler–Seidel matrix

In this section, we show that the generalized Euler–Seidel method is useful to obtain some properties of the generalized second order recurrence relation.
Proposition 8.

\[W_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} (-q)^{k-i} p^i W_{n+i}. \]
(18)

Proof. By setting \(x = -q \) and \(y = p \) in (12), we obtain

\[a_n^k = -qa_n^{k-1} + pa_{n+1}^{k-1}. \]
(19)

For \(a_n^0 = W_n \), \(n \geq 0 \). We can write \(a_n^1 = W_{n+2} \). By induction on \(k \) and using equation (19), we obtain \(a_n^k = W_{n+2k} \). Now considering equation (13) for \(x = -q \) and \(y = p \), we have

\[a_n^k = \sum_{i=0}^{k} \binom{k}{i} (-q)^{k-i} p^i a_{n+i}^0. \]

Then we obtain

\[W_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} (-q)^{k-i} p^i W_{n+i}. \]

This completes the proof. \(\square \)

Using (18), we get the following identities of the Fibonacci numbers \(F_n \), Lucas numbers \(L_n \), Pell numbers \(P_n \), Pell–Lucas numbers \(Q_n \), Jacobsthal numbers \(J_n \), Jacobsthal–Lucas numbers \(j_n \), Bronze Fibonacci numbers \(B_n \), Signed Fibonacci numbers \(B_n \), Signed Pell numbers \(P_n \), and also \(D_n \) and \(N_n \) numbers

- \(F_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} F_{n+i} \)
- \(L_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} L_{n+i} \)
- \(P_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 2^i P_{n+i} \)
- \(Q_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 2^i Q_{n+i} \)
- \(J_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 2^{k-i} J_{n+i} \)
- \(j_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 2^{k-i} j_{n+i} \)
- \(B_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 3^i B_{n+i} \)
- \(F_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} (-1)^i F_{n+i} \)
- \(D_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 4^i D_{n+i} \)
- \(N_{n+2k} = \sum_{i=0}^{k} \binom{k}{i} 2^i N_{n+i} \)

Corollary 9.

\[W_{2n} = \sum_{i=0}^{n} \binom{n}{i} (-q)^{n-i} p^i W_i, \]
(20)

\[W_n = \frac{1}{p^n} \sum_{i=0}^{n} \binom{n}{i} (q)^{n-i} W_{2i}, \]
(21)

and

\[W_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} (-q)^{n-i} p^i W_{i+1}, \]
(22)

\[W_n = \frac{1}{p^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (q)^{n-i} W_{2i-1}. \]
(23)
From (20), we obtain some formulas for these well-known sequences by the new method.

\[
F_{2n} = \sum_{i=0}^{n} \binom{n}{i} F_i, \quad L_{2n} = \sum_{i=0}^{n} \binom{n}{i} L_i,
\]

\[
P_{2n} = \sum_{i=0}^{n} \binom{n}{i} 2^i P_i, \quad Q_{2n} = \sum_{i=0}^{n} \binom{n}{i} 2^i Q_i,
\]

\[
J_{2n} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i} J_i, \quad j_{2n} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i} j_i,
\]

\[
B_{2n} = \sum_{i=0}^{n} \binom{n}{i} 3^i B_i, \quad F_{2n} = \sum_{i=0}^{n} \binom{n}{i} (-1)^i F_i,
\]

\[
\mathcal{P}_{2n} = \sum_{i=0}^{n} \binom{n}{i} (-2)^i \mathcal{P}_i, \quad D_{2n} = \sum_{i=0}^{n} \binom{n}{i} 4^i D_i,
\]

\[
N_{2n} = \sum_{i=0}^{n} \binom{n}{i} 2^i N_i.
\]

Here with help of equation (21), we have following identities:

\[
F_n = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} F_{2i}, \quad L_n = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} L_{2i},
\]

\[
P_n = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} P_{2i}, \quad Q_n = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} Q_{2i},
\]

\[
J_n = \sum_{i=0}^{n} \binom{n}{i} (-2)^{n-i} J_{2i}, \quad j_n = \sum_{i=0}^{n} \binom{n}{i} (-2)^{n-i} j_{2i},
\]

\[
B_n = \frac{1}{3^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} B_{2i}, \quad F_n = \sum_{i=0}^{n} \binom{n}{i} (-1)^i F_{2i},
\]

\[
\mathcal{P}_n = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^i \mathcal{P}_{2i}, \quad D_n = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} D_{2i},
\]

\[
N_n = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} N_{2i}.
\]

We show from (22)

\[
F_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} F_{i+1}, \quad L_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} L_{i+1},
\]

\[
P_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^i P_{i+1}, \quad Q_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^i Q_{i+1},
\]

\[
J_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i} J_{i+1}, \quad j_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^{n-i} j_{i+1},
\]

\[
B_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 3^i B_{i+1}, \quad F_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} (-1)^i F_{i+1},
\]

\[
\mathcal{P}_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} (-2)^i \mathcal{P}_{i+1}, \quad D_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 4^i D_{i+1},
\]

\[
N_{2n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^i N_{i+1}.
\]
The similar results obtained from equation (23):

\[F_n = \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} F_{2i-1}, \quad L_n = \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} L_{2i-1}, \]

\[P_n = \frac{1}{2^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} P_{2i-1}, \quad Q_n = \frac{1}{2^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} Q_{2i-1}, \]

\[J_n = \sum_{i=1}^{n} \binom{n-1}{i-1} (-2)^{n-i} J_{2i-1}, \quad j_n = \sum_{i=1}^{n} \binom{n-1}{i-1} (-2)^{n-i} j_{2i-1}, \]

\[B_n = \frac{1}{3^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} B_{2i-1}, \quad F_n = \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{1-i} F_{2i-1}, \]

\[P_n = \frac{1}{2^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{i-1} P_{2i-1}, \quad D_n = \frac{1}{4^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} D_{2i-1}, \]

\[N_n = \frac{1}{2^{n-1}} \sum_{i=1}^{n} \binom{n-1}{i-1} (-1)^{n-i} N_{2i-1}. \]

4 Some results on generating functions

4.1 Results on ordinary generating functions

Proposition 10. Generating function of the even \(W_n \) numbers is

\[\sum_{n=0}^{\infty} W_{2n} t^n = \frac{a (1 + qt) + (b - pa) pt}{(1 + qt)^2 - p^2 t}. \]

(24)

Proof. Firstly we realize that by setting \(a_0^n = W_n \) in GES we get \(a_0^n = W_{2n} \) (see Eq. (19). Here by considering (16) we have

\[\overline{a_{-q, p}}(t) = \sum_{n=0}^{\infty} W_{2n} t^n = \frac{1}{1 + qt} a_{-q, p} \left(\frac{pt}{1 + qt} \right). \]

Also we know from equation (10)

\[a_{-q, p}(t) = \sum_{n=0}^{\infty} W_n t^n = \frac{a + (b - pa) t}{1 - pt + qt^2} \]

which completes the proof. \(\square \)

Using (24), we obtain the generating functions of the Fibonacci numbers \(F_n \), Lucas numbers \(L_n \), Pell numbers \(P_n \), Pell–Lucas numbers \(Q_n \), Jacobsthal numbers \(J_n \), Jacobsthal–Lucas numbers \(j_n \), Bronze Fibonacci numbers \(B_n \), Signed Fibonacci numbers \(F_n \), Signed Pell numbers \(P_n \), and also \(D_n \) and \(N_n \) numbers, respectively.

\[\sum_{n=0}^{\infty} F_{2n} t^n = \frac{t}{1 - 3t + t^2}, \quad \sum_{n=0}^{\infty} L_{2n} t^n = \frac{2-3t}{1 - 3t + t^2}, \]

\[\sum_{n=0}^{\infty} P_{2n} t^n = \frac{2t}{1 - 6t + t^2}, \quad \sum_{n=0}^{\infty} Q_{2n} t^n = \frac{2-4t}{1 - 6t + t^2}, \]
\[\sum_{n=0}^{\infty} J_{2n} t^n = \frac{t}{1 - 5t + 4t^2}, \quad \sum_{n=0}^{\infty} j_{2n} t^n = \frac{2 - 5t}{1 - 5t + 4t^2}, \]
\[\sum_{n=0}^{\infty} B_{2n} t^n = \frac{3t}{1 - 11t + t^2}, \quad \sum_{n=0}^{\infty} F_{2n} t^n = \frac{1 - 3t}{1 - 3t + t^2}, \]
\[\sum_{n=0}^{\infty} P_{2n} t^n = \frac{-2t}{1 - 6t + t^2}, \quad \sum_{n=0}^{\infty} D_{2n} t^n = \frac{4t}{1 - 18t + t^2}, \]
\[\sum_{n=0}^{\infty} N_{2n} t^n = \frac{1 - 3t}{1 - 6t + t^2}. \]

Proposition 11. Generating function of the odd \(W_n \) numbers is

\[\sum_{n=0}^{\infty} W_{2n+1} t^n = \frac{(b - pa)(1 + qt) + ap}{(1 + qt)^2 - p^2 t}. \] \((25) \)

Proof. In view of the recurrence (8) we have,

\[\sum_{n=0}^{\infty} W_{2n+1} t^n = \frac{1}{p} \left(\sum_{n=0}^{\infty} W_{2n+2} t^n + q \sum_{n=0}^{\infty} W_{2n} t^n \right). \]

Employing (24) on the right in the above equation we obtain (25).

From (25), we get the generating functions for odd indexed of these well-known sequences.

\[\sum_{n=0}^{\infty} F_{2n+1} t^n = \frac{1-t}{1 - 3t + t^2}, \quad \sum_{n=0}^{\infty} L_{2n+1} t^n = \frac{1+t}{1 - 3t + t^2}, \]
\[\sum_{n=0}^{\infty} P_{2n+1} t^n = \frac{1-t}{1 - 6t + t^2}, \quad \sum_{n=0}^{\infty} Q_{2n+1} t^n = \frac{2+2t}{1 - 6t + t^2}, \]
\[\sum_{n=0}^{\infty} J_{2n+1} t^n = \frac{1-2t}{1 - 5t + 4t^2}, \quad \sum_{n=0}^{\infty} j_{2n+1} t^n = \frac{1+2t}{1 - 5t + 4t^2}, \]
\[\sum_{n=0}^{\infty} B_{2n+1} t^n = \frac{1-t}{1 - 11t + t^2}, \quad \sum_{n=0}^{\infty} F_{2n+1} t^n = \frac{1-2t}{1 - 3t + t^2}, \]
\[\sum_{n=0}^{\infty} P_{2n+1} t^n = \frac{1-t}{1 - 6t + t^2}, \quad \sum_{n=0}^{\infty} D_{2n+1} t^n = \frac{1-t}{1 - 18t + t^2}, \]
\[\sum_{n=0}^{\infty} N_{2n+1} t^n = \frac{1+t}{1 - 6t + t^2}. \]

4.2 Results on exponential generating functions

Proposition 12. Exponential generating function of the \(W_{2n} \) numbers is

\[\sum_{n=0}^{\infty} W_{2n} \frac{t^n}{n!} = Ae^{(ap-q)t} + Be^{(bp-q)t}. \] \((26) \)

Proof. For \(a_n^0 = W_n \) in \(GES \) we get \(a_0^n = W_{2n} \) (see Eq. (19)). Using equation (11) we get

\[A_{-q,p}(t) = \sum_{n=0}^{\infty} W_{2n} \frac{t^n}{n!} = e^{-qt} \left(Ae^{pt} + Be^{pt} \right), \]

which completes the proof.
From (26)

\[
\sum_{n=0}^{\infty} F_{2n+1} \frac{t^n}{n!} = e^{\left(\frac{3+\sqrt{5}}{2}\right)t} - e^{\left(\frac{3-\sqrt{5}}{2}\right)t},
\]

\[
\sum_{n=0}^{\infty} L_{2n+1} \frac{t^n}{n!} = e^{\left(\frac{3+\sqrt{5}}{2}\right)t} + e^{\left(\frac{3-\sqrt{5}}{2}\right)t},
\]

\[
\sum_{n=0}^{\infty} P_{2n+1} \frac{t^n}{n!} = e^{(3+2\sqrt{2})t} - e^{(3-2\sqrt{2})t} t^{\sqrt{2}},
\]

\[
\sum_{n=0}^{\infty} Q_{2n+1} \frac{t^n}{n!} = e^{(3+2\sqrt{2})t} + e^{(3-2\sqrt{2})t} t^{\sqrt{2}},
\]

\[
\sum_{n=0}^{\infty} J_{2n+1} \frac{t^n}{n!} = e^{(3+2\sqrt{2})t} - e^{(3-2\sqrt{2})t} t^{\sqrt{2}},
\]

\[
\sum_{n=0}^{\infty} J_{2n+1} \frac{t^n}{n!} = e^{4t} - e^{(3-\sqrt{5})t},
\]

\[
\sum_{n=0}^{\infty} B_{2n+1} \frac{t^n}{n!} = e^{(11+3\sqrt{13})t} - e^{(11-3\sqrt{13})t},
\]

\[
\sum_{n=0}^{\infty} B_{2n+1} \frac{t^n}{n!} = e^{(3+2\sqrt{2})t} + e^{(3-2\sqrt{2})t} t^{\sqrt{2}},
\]

Proposition 13. Exponential generating function of the W_{2n+1} numbers is

\[
\sum_{n=0}^{\infty} W_{2n+1} \frac{t^n}{n!} = A \left(p - \frac{q}{\alpha} \right) e^{(\alpha p-Q)t} + B \left(p - \frac{q}{\beta} \right) e^{(\beta p-q)t}.
\]

(27)

Remark 14. For the sake of simplicity we use the following representation in the proof:

\[
W_e (t) = \sum_{n=0}^{\infty} W_{2n} \frac{t^n}{n!} \quad \text{and} \quad W_o (t) = \sum_{n=0}^{\infty} W_{2n+1} \frac{t^n}{n!}.
\]

Proof. From equation (8) we have

\[
W_o (t) - b = pW_e (t) - pa - q \int W_o (t) \, dt.
\]

This, combined with (26) to gives

\[
\frac{d}{dt} W_o (t) + qW_o (t) = p \frac{d}{dt} \left(Ae^{(\alpha p-q)t} + Be^{(\beta p-q)t} \right).
\]
Hence we have the following differential equation:

\[W_o'(t) + qW_o(t) = Ap(\alpha p - q) e^{(\alpha p - q)t} + Bp(\beta p - q) e^{(\beta p - q)t}. \]

The solution of this linear differential equation is:

\[W_o(t) = A \left(p - \frac{q}{\alpha} \right) e^{(\alpha p - q)t} + B \left(p - \frac{q}{\beta} \right) e^{(\beta p - q)t} + Ke^{-qt}. \]

Considering \(W_o(0) = b \) we calculate the constant \(K \) as

\[K = b - A \left(p - \frac{q}{\alpha} \right) - B \left(p - \frac{q}{\beta} \right) = 0. \]

Combining these results and after some rearrangement we complete the proof. \(\square \)

Using (26)

\[
\begin{align*}
\sum_{n=0}^{\infty} F_{2n+1} \frac{t^n}{n!} &= \frac{(1+\sqrt{5})e^{\frac{1+\sqrt{5}}{2}t} - (1-\sqrt{5})e^{\frac{1-\sqrt{5}}{2}t}}{2\sqrt{5}}, \\
\sum_{n=0}^{\infty} L_{2n+1} \frac{t^n}{n!} &= \frac{(1+\sqrt{5})e^{\frac{1+\sqrt{5}}{2}t} + (1-\sqrt{5})e^{\frac{1-\sqrt{5}}{2}t}}{2}, \\
\sum_{n=0}^{\infty} P_{2n+1} \frac{t^n}{n!} &= \frac{(1+\sqrt{2})e^{(3+2\sqrt{2})t} - (1-\sqrt{2})e^{(3-2\sqrt{2})t}}{2\sqrt{2}}, \\
\sum_{n=0}^{\infty} Q_{2n+1} \frac{t^n}{n!} &= (1 + \sqrt{2}) e^{(3+2\sqrt{2})t} + (1 - \sqrt{2}) e^{(3-2\sqrt{2})t}, \\
\sum_{n=0}^{\infty} J_{2n+1} \frac{t^n}{n!} &= 2e^{4t} + e^t, \\
\sum_{n=0}^{\infty} J_{2n+1} \frac{t^n}{n!} &= 2e^{4t} - e^t, \\
\sum_{n=0}^{\infty} B_{2n+1} \frac{t^n}{n!} &= \frac{(3+\sqrt{13})e^{\frac{(11+3\sqrt{13})}{2}t} - (3-\sqrt{13})e^{\frac{(11-3\sqrt{13})}{2}t}}{2\sqrt{13}}, \\
\sum_{n=0}^{\infty} F_{2n+1} \frac{t^n}{n!} &= \frac{(\sqrt{3}+1)e^{\frac{(3-\sqrt{7})}{2}t} + (\sqrt{3}-1)e^{\frac{(3+\sqrt{7})}{2}t}}{2\sqrt{3}}, \\
\sum_{n=0}^{\infty} P_{2n+1} \frac{t^n}{n!} &= \frac{(\sqrt{2}-1)e^{(3-2\sqrt{2})t} - (\sqrt{2}+1)e^{(3+2\sqrt{2})t}}{2\sqrt{2}}, \\
\sum_{n=0}^{\infty} D_{2n+1} \frac{t^n}{n!} &= \frac{(2+\sqrt{5})e^{(9+4\sqrt{5})t} - (2-\sqrt{5})e^{(9-4\sqrt{5})t}}{2\sqrt{5}}, \\
\sum_{n=0}^{\infty} N_{2n+1} \frac{t^n}{n!} &= \frac{(1+\sqrt{2})e^{(3+2\sqrt{2})t} + (1-\sqrt{2})e^{(3-2\sqrt{2})t}}{2}.
\end{align*}
\]
References

