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1 Introduction

A right triangle is called rational when its legs and hypotenuse are all rational numbers. Pytha-
gorean triple like (3, 4, 5) is the most common example of this type of triangles. Scaling such
triangle by any rational number r, we can get another rational triangle such as (3r, 4r, 5r). Any
rational right triangle has a rational area but not conversely. A famous longstanding problem
about right triangle with rational sides lengths asks: which rational numbers occur as the area
of rational right triangles, i.e., given any rational number r, does there exist positive rational
numbers a, b, c, such that a2 + b2 = c2 and (1

2
)ab = r. This deceptively simple-looking problem

is still not completely solved.
In the case of affirmative answer, the number r is called a congruent number, (otherwise it

is called non-congruent number) and a description of all congruent numbers is referred to as the
congruent number problem. Since scaling a triangle changes its area by a square factor, and every
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rational number can be multiplied by a suitable rational square to become a square-free positive
integer, we can concentrate in the congruent number problem on square-free positive integers.
An equivalent condition, as one easily checks, is that there should exist a rational square which,
when increased or decreased by d, remains a square.

The congruent number problem was first stated by the Persian mathematician Al-Karaji
(C. 953 – C. 1029). However his version involves not in terms of the triangles but instead on
its equivalent form of the square numbers mentioned above. The name comes from the fact that
there are three squares which are congruent modulo a number. A major influence on Al-Karaji
was the arabic translation of the works of the Greek mathematician Diophantus (C. 210 - C. 290)
who posed similar problems.

First tables of congruent numbers were found also in Arab manuscripts namely at the time of
Al-Karaji himself, and 5 and 6 appeared there. A small amount of progress was made in the first
millennium. In 1225, Fibonacci was the first after Al-Karaji to show that 5 and 7 are congruent
numbers. He also stated without giving any proof that 1 is not a congruent number. In years
between 1640–1659 Fermat proved this case. The proof was given by the method of descent,
which was discovered by Fermat himself on this very problem. For the argument see [8]. In
1915, Bastein [4] found all square-free congruent numbers less than 100 which were exactly 36
cases. Then 62 more square-free congruent numbers less than 1000 were discovered by Gërardin
[13]. However by the 1980, there were still cases smaller than 1000 that had not been resolved.
The first investigations on the history of congruent numbers can be found in [18], [19], [15],
and [11]. Also, for more information on some other results about congruent and non-congruent
numbers without using the theory of elliptic curves consult [29].

2 Modern results

Using elliptic curves: All recent results about the congruent numbers stem from the fact that n is
a congruent number if and only if the elliptic curve En(Q) : y2 = x3 − n2x contains a rational
point with y 6= 0, equivalently, a rational point of infinite order [17].

In 1929, Nagell [22] had a very short and elementary proof of the fact that the rank of En(Q) is
zero in the case of n = p ≡ 3(mod8) for prime number p. Thus these numbers are non-congruent.
He also pointed out that the same technique shows that 1, 2, and all 2q with q a prime≡ 5(mod8)

are non-congruent numbers.
Kurt Heegner, exploit the elliptic curves in a nontrivial way by which he developed the theory

of what is now called Heegner points. In 1952, he proved that all n = 2p with prime numbers
p ≡ 3(mod4) are congruent. These results are unconditional, while (as described below) most of
the later results rely on the Birch and Swinnerton-Dyer Conjecture [10].

Monsky [21] later extended Heegner method to show that the primes≡ 5, 7(mod8) are congru-
ent numbers. Since primes≡ 3(mod8) are non-congruent by Nagell’s result mentioned above, this
only leaves the primes ≡ 1(mod8). Here the situation is still unknown. For instance 17 is known
to be non-congruent and 41 congruent. In general from numerical evidence for 1000 numbers in
1972, it has been conjectured by Alter, Curtz, and Kubota [1] and [2] that if n ≡ 5, 6, 7(mod8),
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then n is a congruent number. It is shown by Stephens [26] that this conjecture is a corollary of
the Selmer conjecture for elliptic curves . In some special cases, the Selmer conjecture is known
to be true by the method of Heegner mentioned above, and therefore, for these cases ACK con-
jecture is also true. These are when n is a prime congruent to 5 or 7(mod8), or when n = 2p

where p is a prime congruent to 3(mod4).
In 1982, Jerrold Tunnell [28] made significant progress by exploiting the more trivial connec-

tion between congruent numbers and elliptic curves. He found a simple formula for determining
whether or not a number is a congruent number. This allowed the first several thousand cases to
be resolved very quickly. One issue is that the complete validity of his formula depends on the
truth of a particular case of one of the outstanding problems in mathematics known as the Birch
and Swinnerton-Dyer conjecture [10].

Let p, q and r denote distinct prime numbers. The following results on congruent numbers
have been determined so far. For congruent numbers:

• n = 2p3 i.e., p3 ≡ 3(mod4) [Heegner (1952)[16], and Birch (1968)[6, 7]].

• n = p5, p7 i.e., pi ≡ i(mod8) [Stephens (1975)[26]].

• n = puqv ≡ 5, 6, 7(mod8), 0 ≤ u, v ≤ 1 [B. Gross (1985)[14]].

• n = 2p3p5, 2p5p7,

• n = 2p1p7 , (p1
p7
) = −1, [P. Monsky (1990)[21]].

• n = 2p1p3 , (p1
p3
) = −1,

where (p
q
) is the Legendre symbol.

A detailed information on non-congruent numbers can be found in [12]. Also for a recent
survey article about the congruent numbers and their variants see [27]. In 1984, Chahal [9] applied
an identify of Desboves to show that there are infinitely many congruent numbers in each residue
class modulo 8 and, in particular, infinitely many square-free congruent numbers, congruent to 1,
2, 3, 4, 5, 6, and 7 modulo 8. This result is generalized later by M. A. Bennet [5] as follow: If m is
a positive integer and a is any integer, then there exist infinitely many (not necessarily square-free)
congruent numbers n with n ≡ a(modm). If, further, gcd(a,m) is square-free, then there exist
infinitely many square-free congruent numbers n with n ≡ a(modm). Finally on September 22,
2009 Mathematicians from North America, Europe, Australia, and South America have resolved
the first one trillion cases (still conditional on the Birch and Swinnerton-Dyer conjecture) [3].

3 Our results

In the present paper, the author gives an elementary and short proof without using the theory of
elliptic curves to obtain many known and unknown congruent numbers unconditionally. First of
all, we discuss a very easily verified lemma to show that given any Pythagorean triple, one can
find 5 more Pythagorean triples which give rise to some congruent numbers in a very simple man-
ner. Secondly, by using these triples along with the expressions for the initial Pythagorean triple
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in terms of the two parameters with opposite parity, we obtain 6 different polynomial expressions
of two variables defined on the positive integers having values as congruent numbers. Thirdly,
according to some simple facts from elementary number theory such as the necessary and suf-
ficient conditions for a number to be written as a sums or differences of two squares, we ob-
tain several other polynomials of one variable which always having values as congruent num-
bers. Some of these expressions have already been appeared in literature with or without proofs.
Finally, in the last part, we will construct simple connections between Pythagorean triples and the
Pell equations plus its analogous counterpart which give rise to new congruent numbers n with
arbitrarily many prime factors. To this end, we start off with the following lemma.

Lemma 3.1. For a Pythagorean triple (a, b, c), with b > a the following are all Pythagorean
triples:

(1) (2ac, b2, a2 + c2),

(2) (2bc, a2, b2 + c2),

(3) (2ab, b2 − a2, c2).

Proof: It is a straightforward calculation.

Corollary 3.2. The numbers ac, bc, b2 − a2, a2 + c2, and b2 + c2, are all congruent numbers.

Example 3.3. For the Pythagorean triple (3, 4, 5) with corresponding congruent number 6 we
get 15, 5, 7, 41, 34 as square-free congruent numbers and 20 as congruent number having square
factor 4.

As is well-known, the primitive Pythagorean triples were completely described by the exact pat-
terns of the form a = s2 − t2, b = 2st, c = s2 + t2, where s > t ≥ 1 are such that gcd(s, t) = 1,

and s, t have opposite parity i.e., s− t is always odd.

Corollary 3.4. For any positive integer valued parameters s and t with the above conditions, the
following expressions are all congruent numbers.

(1) A = st(s2 − t2),

(2) B = st(s2 + t2)/2,

(3) C = s4 − t4,

(4) D = 2(s4 + t4),

(5) E = s4 + t4 + 6s2t2,

(6) F = (6s2t2 − s4 − t4).

Remark 3.5. Another elementary proof for (2) is given in [24]. By letting s = x2 and t = 2y2 in
(2) and ignoring square factor, we get x4 + 4y2. This last expression along with (3), (4), (5), and
(6) appeared in [2] without any explanation or proofs.
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Example. By letting s = 653821282242, and t = 127050186481 in the expression (2), we get
the congruent number n = 157(53156661805)2. Ignoring the square factor we are lead to the
square-free congruent number 157.
The corresponding right triangle is then given by:

a = 338402045517054238391582296989254448074677078418,

b = 294808091174913744183357386456082152630805118800,

and
c = 448807035408673939849115026181349726321896944082.

D. Zagier showed that the simplest rational triangle with area 157 has the following sides.

a = 6803298487826435051217540/411340519227716149383203,

b = 411340519227716149383203/21666555693714761309610,

and
c = 2244035177043369699245755130906674863160948472041.

divided by
8912332268928859588025535178967163570016480830.

Next, we recall the following elementary lemma.

Lemma 3.6. The positive integer n can be written as a difference of two squares namely
n = a2 − b2 if and only if n− 2 is not divisible by 4.

For the proof of this lemma, the reader may consult [25].
This simple fact along with the above corollaries lead to the following results.

Theorem 3.7. For any positive integer k, the following are all congruent numbers.

(A)


(A1) k(k2 − 1),

(A2) 2k(k2 + 1), for n = 4k;

(A3) (k4 − 1),

(B)


(B1) k(2k + 1)(4k + 1),

(B2) 2k(2k + 1)(8k2 + 4k + 1), for n = 4k + 1;

(B3) (4k + 1)(8k2 + 4k + 1),

(C)


(C1) k(k + 1)(2k + 1),

(C2) 2k(k + 1)(2k2 + 2k + 1), for n = 4k + 2 ≡ n = 2k + 1;

(C3) (2k + 1)(2k2 + 2k + 1),
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(D)


(D1) 2(k + 1)(2k + 1)(4k + 3),

(D2) (k + 1)(2k + 1)(8k2 + 12k + 5), for n = 4 + 3;

(D3) (4k + 3)(8k2 + 12k + 5),

(E)


(E1) 2k(2k + 1)(2k − 1),

(E2) k(4k2 + 1), for n = 8k;

(E3) (2k + 1)(4k2 + 1),

(F )


(F1) k(4k + 1)(8k + 1),

(F2 2k(4k + 1)(32k2 + 8k + 1), for n = 8k + 1;

(F3) (8k + 1)(32k2 + 8k + 1),

(G)


(G1) 2(2k + 1)(4k + 1)(8k + 3),

(G2) (8k + 3)(32k2 + 24k + 5), for n = 8k + 3;

(G3) (2k + 1)(4k + 1)(32k2 + 24k + 5),

Proof: For the proof, we assume that n is an odd number. For an even number, the same arguments
can be easily applied. Let n = 2mk + (2r + 1), where m = 1 or m is an even number, and s

varies from 0 to m− 1. Then we can write n as

n = 2mk + (2r + 1) = (mk + r + 1)2 − (mk + r)2.

From this we define a Pythagorean triple as follows: a = s2 − t2, b = 2st, and c = s2 + t2,
where s = (mk + r + 1), and t = (mk + r). Now, the results are immediate from the above
corollary. �

Remark 3.8. From A(1), we see that the product of any three consecutive numbers is a congruent
number. In particular, the product of twin primes are parts of congruent numbers. If moreover,
one of the three numbers appearing in the product is square, then the product of the two remaining
numbers is a congruent number.

Remark 3.9. (E2) has already been discussed by Chahal [9]. In his paper, he obtained this result
as a consequence of some properties of elliptic curves along with an identity of Desboves.

Before stating the main theorems, we recall the following well-known fact from elementary
number theory. The proof can be found in [25].

Lemma 3.10. The positive integer n is the sum of two squares if and only if each prime factor n
of the form 4r + 3 occurs to an even power in the prime factorization of n.

Theorem 3.11. Let d = p1p2...pm, such that p1 = 1 or 2, and all other factors are distinct primes
of the form 4r + 1. Then for any x-component of the solution (x, y) in the Pell-like equation
x2 − dy2 = −1, 2xd is a congruent number. Furthermore, if x a square itself, then 2d is also a
congruent number.
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Proof: For any x-component of the solution, the triple (x2−1, 2x, x2+1) is a Pythagorean. Now
main lemma implies that 2x(x2 + 1) is a congruent number. Substituting x2 + 1 by dy2 from the
Pell-like equation and ignoring the square factor y2, we see that 2xd is a congruent number. The
last assertion is a triviality. �

Corollary 3.12. For any number d as in the statement of the theorem, there exists a congruent
number having d as a square-free part with arbitrarily many prime factors of the above mentioned
forms.

Theorem 3.13. Let d be any positive number which is not in the form 4r + 2. Then for any
x-component of the solution in the pell equation x2 − dy2 = 1 other than (±1, 0), xd is a
congruent number. Furthermore, if x is a square itself, then d is also a congruent number.

Proof: In this case, we consider the number x(x2− 1) which is congruent by the same reasoning.
Replacing x2 − 1 by dy2, and ignoring the square factor y2, the result follows easily. �

Remark 3.14. It is well known that for any positive square-free integer d, the Pell equation
x2 − dy2 = 1 has an infinitude of solutions, which can be easily expressed in terms of the
fundamental solution p, q, where p, q > 0. On the other hand, its analogous counterpart with
equation x2 − dy2 = −1 is solvable for only certain values of d. In fact, for this equation a
necessary condition to be solvable is that all odd prime factors of d must be of the form 4r + 1,
and that cannot be doubly even (i.e., divisible by 4). However, these conditions are not sufficient
for a solution to exist, as demonstrated by the equation x2 − 34y2 = −1 , which has no solutions
in integers, to see this the reader may consult [23].

Example. Let d = m2 + 1. Then the Pell equation u2 − dv2 = 1 has a solution (2m2 + 1, 2m).
From this it is easy to see that for any nonzero y-component in the solution of the Pell equation
x2 − 2y2 = 1, the number d = y2 + 1 is a congruent number.
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